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Abstract

In this thesis, we explore applications of quantum computational and quantum-inspired classical

approaches to the domain of graph representation learning. We focus on two distinct areas: firstly,

we discuss a quantum-inspired perspective on knowledge graph embeddings; secondly, we analyse

the capabilities of possible quantum graph neural network methods.

In Part I, we use the quantum-inspired natural language processing approach DisCoCat to give

a novel perspective on knowledge graph embedding (KGE) methods. We show how DisCoCat can

be seen as a generalisation of later KGE techniques, formalise deep connection between these two

fields, and discuss potential directions to build on these correspondences in both fields, bringing

ideas from each area to the other.

In Part II, we investigate quantum analogues for graph neural network (GNN) architectures,

formalising what it means for quantum circuits to respect the structure of the graph domain in

our proposed framework of Equivariant Quantum Graph Circuits. We discuss how earlier work

on quantum machine learning over graphs can be seen as a special case of this framework and

discuss other possible subclasses. We analyse the expressive capacity of such models, confirming

experimentally that they are more powerful than many popular GNNs, and prove that they are

universal approximators for functions over the graph domain.
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Chapter 1

Introduction

This project aims to bring together useful ideas from two distinct areas of computer science:

quantum computing and graph representation learning. In this chapter, we briefly review the past

and present of these fields, then discuss our contributions and give an overview of the rest of the

thesis.

1.1 Historical overview

Quantum computing is the study of computation using specialised hardware that can make

use of quantum mechanical behaviour in a controlled way to go beyond what classical computers

can feasibly calculate. This has been a subject of attention for around 40 years [24], and it

is now getting close to being applicable in practice. While quantum methods (such as Shor’s

factoring algorithm [61]) have been known to provide even exponential speedups compared to the

best known classical approaches for certain problems since the nineties, until recently there was

no quantum hardware that could perform even the simplest operations in a controlled, reliable

way. We have since entered the era of noisy intermediate-scale quantum (NISQ) devices: although

this hardware is still very far from sufficient to run famous algorithms such as Shor’s, it has

already outperformed classical supercomputers on carefully selected tasks [4] and it is expected

that the performance of quantum devices will keep increasing in the coming years. This progress

has motivated an increasing amount of recent work into applications of near-term devices. One

candidate area is quantum machine learning, a subfield that seeks to use quantum computers to

solve machine learning tasks [51].

Graph representation learning or relational learning is a comparatively young subfield

of computer science that arose through the wide successes of machine learning methods in the

last decade. Inspired by specialised architectures for other domains (such as convolutional neural
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networks for grids and recurrent neural networks for sequences), this area is focused on finding

methods for effectively learning architectures for graph-structured data. It encompasses a range

of significantly different methods itself: in most problem settings, a class of deep neural network

architectures called graph neural networks (GNNs) are commonly used, but there are certain tasks

where simpler shallow embedding approaches are used as we will discuss later [29].

1.2 Our contributions

While both of these two fields have seen growing interest in recent years, the amount of interdis-

ciplinary work is still fairly small – we hope this project can advance the understanding of what

can be achieved using quantum methods on graphs, and also motivate future work by pointing out

interesting connections and providing a unifying perspective.

The project focuses on two distinct areas where we see potential for quantum computing and

quantum-inspired classical methods to contribute to the field of graph representation learning. In

Part I, we explore correspondences between DisCoCat, a quantum-inspired natural language pro-

cessing approach [21, 19], and more recent work on shallow node embeddings for knowledge graphs,

an important specialty within the field of relational learning. We show that certain knowledge

graph embedding methods can be seen as a special case of DisCoCat, and establish connections

that can inform further work in both fields. In Part II, we focus on quantum analogues of graph

neural networks: we propose a unifying framework that subsumes existing proposals and prove

powerful results about the theoretical expressive power of such models, supported by experiments.

In both parts, our focus is primarily on the theoretical side. In Part I, this is because our

derivations lead to new perspectives on existing methods, but do not suggest new experiments;

in Part II, we chose this focus because only very small-scale experiments are feasible today by

classical simulation or using NISQ hardware, while our theoretical insights will stay relevant even

as the capabilities of available quantum hardware increase.

The rest of this section gives an overview of each part of the thesis.

1.2.1 Quantum-inspired knowledge graph embeddings

In the first half of this thesis, we explore the correspondences between DisCoCat and certain more

recent knowledge graph embedding (KGE) methods. We discuss how DisCoCat can be seen as a

generalisation of these KGE methods and point out connections that might inspire further work

in both fields.

DisCoCat is an approach to natural language processing (NLP) inspired by category theoretic

approaches to formal grammars and quantum computing [21, 19]. By focusing on the grammatical
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structure of sentences and mapping this to computations on classical or quantum hardware in a

way that respects this structure, it seeks to combine the advantages of rigid grammar-based NLP

approaches with the power of distributional methods that operate on vectorised representations of

words. This is done by mapping words to vectors or higher-rank tensors with a shape depending

on their grammatical role in the sentence, and contracting these tensors in a pattern corresponding

to the sentence structure.

Knowledge graphs are datasets storing facts about various entities (people, objects, concepts

etc.) in a simple but very general form. They consist of a set of entities (such as ‘Alice’, ‘Bob’), a

set of possible relations between the entities (such as ‘likes’), and a set of known true facts built

from these (‘Alice likes Bob’). Unfortunately, these datasets tend to be highly incomplete, with

only a fraction of true facts listed. This has motivated the application of machine learning to make

predictions about unknown facts and reason over knowledge graphs in the presence of uncertainty.

Most state-of-the-art methods do this using shallow node/relation embeddings: each entity and

relation is represented as a learnable vector, with a scoring function combining these vectors to

assign a likelihood to each fact. By optimising the error over a set of ground-truth facts, these

models can pick up on patterns and generalise to new facts beyond their training data.

We discuss the background in these two domains in detail in Chapter 2, then build on this to

explore connections between them in Chapter 3. We reduce KGE tasks to sentence classification

tasks in natural language by mapping entities and relations to phrases and facts to sentences.

Applying DisCoCat methods to such sentences is shown to respect the structure of the knowledge

graph domain, allowing us to derive algorithms that are not intrinsically tied to the unstructured

realm of natural language. The derived algorithms turn out to match well-known KGE methods,

giving us a novel perspective on existing approaches. In Chapter 4, we discuss potential directions

for future work in both fields based on these connections.

1.2.2 Quantum graph neural networks

In the second part of the project, we investigate quantum alternatives of graph neural networks.

We propose a unifying framework of Equivariant Quantum Graph Circuits (EQGCs) to formalise

the notion of quantum circuits that respect the invariances of the graph domain, and show that

it subsumes existing methods as special cases. We explore design choices within this framework,

characterising several practical subclasses for graphs as well as a restricted class that is suitable

for learning over sets instead. We then analyse the representational capacity of these models

in comparison with their classical counterparts empirically and theoretically: we experimentally

confirm that they go beyond the expressive power of popular GNN models and then prove that

they are in fact universal approximators for functions over the graph domain.
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GNNs are deep neural networks that are used to predict properties of nodes or entire graphs in a

way that respects their structural invariances: the ordering of nodes and edges in the representation

should not matter [29, 8]. They achieved impressive results on a wide range of benchmarks in recent

years, and there has also been significant work on the theoretical capabilities of such models. This

included results showing limitations of the expressive power of a broad class of popular GNN

models – particularly, some pairs of distinct graphs will always result in the same predictions with

these methods (see, e.g., [7, 67, 43]). Recent work has focused on getting around this limitation at

the cost of more computational power [48, 43] or by introducing randomisation [2, 56].

Meanwhile, there have been a number of proposals for quantum analogues of GNNs, typically

using sets of qubits to represent information about each node, and performing multi-node entan-

gling operations according to the structure of the graph in question [64, 72]. This lets us make

use of the exponentially large Hilbert space of the joint system to model complex interactions via

entanglement between the node states. Such methods have been supported by empirical data from

small-scale experiments, particularly when applied to modelling quantum systems, but to date

there has been no clarity on how their expressivity compares to classical approaches.

Our framework of EQGCs gives a unifying perspective on these methods and allows us to

compare their expressive power to that of classical approaches in a highly general way. We find

that certain EQGC subclasses can represent arbitrary Boolean and real-valued functions over

bounded-size graphs, which is more than what many popular GNN methods are capable of [67,

42].

This part of the thesis is organised as follows. We first introduce the relevant background

on GNNs and their properties, including recent results involving randomised models and existing

quantum models for graph representation learning, in Chapter 5. We then introduce Equivariant

Quantum Graph Circuits and explore the space of possible methods in this framework in Chapter

6. Chapter 7 is dedicated to analyzing the representation power of practical EQGC subclasses:

this is where we get to our main result, showing that they are universal models for functions over

bounded-size graphs. Finally, we summarise our results and discuss directions for future work in

Chapter 8

Although our constructions do not show quantum advantage over classical models with ran-

domisation, our results serve as important steps towards a better theoretical understanding of

quantum methods. Additionally, through the EQGC framework, we provide an analysis of possi-

ble quantum architectures that can help inform future work.
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Chapter 2

Background and Related Work

2.1 DisCoCat

Categorical compositional distributional semantics, also known as DisCoCat for short, is a natural

language processing (NLP) approach inspired by category theoretic approaches to quantum com-

puting and formal grammars [21, 19]. It aims to combine the benefits of distributional models

of language, where words are represented as abstract vectors that are processed through neural

models, with more structured grammar-based approaches. There are also possible benefits from

running DisCoCat models on quantum hardware, and several small-scale experiments have been

performed on current noisy intermediate-scale devices [44, 38]. However, the general DisCoCat

approach can be defined in purely classical terms and implemented on classical hardware, which

the setting this project will focus on.

Model overview

In DisCoCat, each word of a sentence is mapped to a tensor in a (real or complex) vector space

of a rank and dimensionality depending on its grammatical role. These tensors are then reduced

according to the grammatical structure of the sentence to form a vector encoding the semantics of

the sentence. This is typically depicted using the diagrammatic notation of monoidal categories

(for the categories FVect in the case of real tensors and FHilb for complex ones), which are

essentially tensor network diagrams.

For the purposes of this project, we will be mostly concerned with nouns and transitive verbs.

Nouns are represented by rank-one tensors, i.e., vectors of some dimensionality dn, while verbs

correspond to rank-three tensors of dimensionality dn×ds×dn, where is the dimensionality of the

resulting sentence embedding vectors. Other word types can be derived from Lambek’s pregroup-

based formal grammar [35], but these two suffice for forming simple sentences.

11



Example 1. The sentence ‘Alice likes Bob’ is represented by the following diagram:

Alice likes Bob

,

where the thin wires represent tensor contractions involving noun embeddings of size dn, while

the thick wire carries the sentence embedding of size ds.

In terms of tensors, this shows that we get the sentence embedding vector by reducing the

rank-3 tensor for ‘likes’ with the vectors for ‘Alice’ and ‘Bob’ on each side:

−−−−−−−−−−→
Alice likes Bob =

−−−→
Alice×

−−→
likes×

−−→
Bob (2.1)

The dimensionality of sentence embedding vectors, and what exactly they should represent,

depends on the task at hand. For example, we might be interested in binary sentence classification

tasks, such as positive/negative sentiment classification, or judging whether a sentence is true. In

these cases, we can set ds = 1 and have positive/negative real numbers correspond to the two

classes.

Remark 1. In the case of binary sentence classification with ds = 1, the dn × ds × dn tensor for

transitive verbs effectively reduces to a dn×dn matrix and the corresponding wire can be removed

from the DisCoCat diagrams. This will be important for our derivations in Sections 3.2 and 3.3.

Two approaches to representing words

There are two methods for selecting embeddings for individual words in DisCoCat. For most words,

supervised training is proposed, just as in most NLP models. A space of possible vectors/tensors

is given – this might be all tensors of the appropriate shape, or some subspace (e.g., for efficient

implementation on a quantum computer). Initial word embeddings are chosen at random. A set

of training sentences is given with ground-truth labels for some aspect (e.g., classification of truth

value, sentiment, topic). Based on these labels, the word embedding parameters are gradually

optimised to minimise some error term (e.g., cross-entropy for classification).

For certain hand-selected words, there have been proposals for a different approach: directly

engineering the precise inner structure of function words based on their logical meaning [54, 55].

This makes it easier for models to learn with fewer examples, and in certain cases also simplifies

calculations. For example, Sadrzadeh et al. suggest the following instantiation for the relative

pronoun “that” in noun phrases such as “dog that bites men” with desirable logical properties [54]:
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dog bites men

where the white dots represent
∑
i∈Bn

|iii〉 and
∑
j∈Bs

|j〉, with Bn,Bs standing for the computa-

tional bases of the noun and sentence embedding space respectively.

In the case of truth-value classification with ds = 1, this construction reduces to an elementwise

product of vectors for the noun “dog” and the phrase “bites men” (note that the transitive verb

“bites” is represented by an dn× dn matrix as discussed in Remark 1, which can be applied to the

embedding of “men” to produce another dn-dimensional vector):

−−−−−−−−−−−−−−→
dog that bites men =

−→
dog� (

−−→
bites×−−→men) (2.2)

The general case with ds > 1 is similar, except we first get a matrix from the rank-3 tensor
−−→
bites

by reducing it with the white dot in the sentence space, which corresponds to simply summing

over the appropriate dimension.

2.2 Knowledge graph embedding

2.2.1 The challenges of knowledge graphs

An important graph-structured domain that has attracted significant attention in the field of graph

representation learning is that of knowledge graphs: relational datasets storing a wide range of facts

about various entities [13, 41, 45].

Formally, a knowledge graph consists of a set of entities E , a set of relations R, and a set of

true facts F ⊂ E ×R× E . For example, entities could represent people, relations could represent

relationships like ‘friend of’, and the set of facts represents known true statements. The first entity

of a triple is often called the subject, while the second one is the object ; alternatively, the terms

head and tail are also used.

The main idea behind knowledge graph embedding (KGE) models is to embed knowledge graphs

into low-dimensional vector spaces so as to use the resulting representations for various prediction

tasks, following a gradient-based optimisation [14, 33]. This is possible thanks to various regular-

ities and patterns in the data that successful KGE models can capitalise on in order to provide

accurate predictions.

Link prediction

Real-world knowledge graphs tend to be highly incomplete, with only a fraction of true facts known.

Hence, an important task is knowledge graph completion, or link prediction: given all entities and
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relations in a knowledge graph with only a subset of all true facts, the task is to predict further

facts that are likely to be true. More specifically, this is usually framed as binary classification task

of deciding whether a given (subject, relation, object) triple is a true fact or not. KGE models

are usually trained to do this in a supervised manner: they are trained on the known true facts

along with randomly sampled false examples and validated on a held-out set. The best-performing

model can be used to rank unknown facts and find ones that are considered true with sufficiently

high confidence.

In order to do this, we need robust metrics for comparing KGE models. In principle, we could

use typical metrics of binary classification tasks, but these are generally not very well-suited to

the problem of link prediction. For example, when classifying randomly sampled facts, we can

get near-perfect accuracy by always predicting it is not a true fact. This could be mitigated by

sampling differently, but then our metric depends heavily on the details of our sampling approach.

Instead, the usual metrics are designed specifically for the domain of knowledge graphs.

One standard metric is hits@k: for a known true fact (s, r, o), consider completing (s, r, ·) with

all possible objects. The model is successful on this fact if completing this o is within the k most

likely facts according to its ranking. (Importantly, other known true solutions are filtered from

the ranking so that the model is not punished for the existence of facts with multiple correct

solutions [15].) Variations with facts of the form (·, r, o), where the subject is hidden, are also

used. The model’s hits@k is then the fraction of true facts in the test set where the model is

successful in this sense:

Hk =
1

2|F+
test|

∑
(s,r,o)∈F+

test

(
1[rank(s | , r, o) ≤ k] + 1[rank(o | s, r, ) ≤ k]

)
, (2.3)

where 1[·] is the indicator function, F+
test is the set of held-out true facts, rank(s | , r, o) is the

rank of the fact (s, r, o) among corrupted negative examples (s′, r, o) according to the likelihoods

predicted by the model, and rank(o | s, r, ) is analogous with objects ranked. This is often reported

with several different values of k, e.g., 1, 3 and 10.

Other common metrics include mean rank (MR) and mean reciprocal rank (MRR). These are

based on the same idea of ranking true facts against a filtered list of corrupted variants. MR simply

averages the ranks, which is often highly affected by a few bad predictions leading to high ranks;

MRR avoids this by averaging their reciprocals:

MR =
1

2|F+
test|

∑
(s,r,o)∈F+

test

(
rank(s| , r, o) + rank(o|s, r, )

)
(2.4)

MRR =
1

2|F+
test|

∑
(s,r,o)∈F+

test

( 1

rank(s| , r, o)
+

1

rank(o|s, r, )

)
(2.5)

MR is better if lower, with possible scores in the interval [1, |E|], while MRR is better if higher,

with scores in (0, 1].
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Complex query answering

A strength of knowledge graphs as a data structure is the possibility to not just check individual

facts, but explore them and reason over several steps.

Example 2. With a comprehensive dataset of professional and social connections, we might be

able to search for friends of our friends with experience with a particular technology. This can be

expressed as a sentence in first-order logic over the set of entities, using relations of the knowledge

graph – we are looking for some person p such that the following holds:

experiencedWith(p, someTech) ∧ ∃x.
(
friends(p, x) ∧ friends(x,me)

)
Complex query answering is the task of finding entities satisfying such queries, typically given

in some restricted form of first-order logic depending on the capabilities of each method. Given a

complete knowledge graph, it is relatively easy to find solutions to most such queries. However,

as we have discussed, these datasets are usually incomplete, so KGE models are often necessary.

There is a wide range of approaches: some build on link prediction models and combine their

predictions for individual facts to find satisfying entities for a given query [3], while others design

methods that jointly consider the entire query without explicitly calculating probabilities of each

link holding [28, 25, 52].

For evaluating the performance of complex query answering methods, the same ranking-based

metrics are typically used that we discussed in the case of link prediction. By walking over the

edges given by known true facts in the training and test set, we can find entities that satisfy a

given property, and the models should rank these ground truth answers above others. This lets us

define hits@k, MR and MRR just as before.

2.2.2 Link prediction methods

In this section, we review popular methods for the task of link prediction, with a particular focus

on tensor-based linear models that will be interesting to compare to the DisCoCat framework.

Current state-of-the-art link prediction methods are largely based on shallow node/relation

embeddings: for each entity e ∈ E and relation r ∈ R, embedding vectors e, r in some real

or complex vector spaces are learned directly by gradient-based optimisation. These are then

combined by some scoring function that gives some predicted probability φ(s, r,o) to a fact (s, r, o)

being true. There is also work on neural approaches using deep neural networks to produce

the embeddings [58] or to learn the scoring functions [22], but so far these tend to overfit and

underperform shallow embeddings.

The primary supervised loss minimised during training is typically standard binary cross-
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entropy:

L = − 1

Ftrain

∑
((s,r,o),l)∈Ftrain

(
l log(φ(s, r,o)) + (1− l) log(1− φ(s, r,o))

)
(2.6)

where Ftrain is the training set including randomly sampled negative examples, with labels l ∈ {0, 1}

representing the expected predictions. To account for the chance that negative samples might

accidentally include unknown true facts, soft labels l ∈ [0, 1] are sometimes used instead of setting

them to 0.

In addition to the supervised loss, regularisation methods are often used. This includes, e.g.,

an L2 regularisation loss term for many models [49, 6].

RESCAL

In the RESCAL model, for each relation, a bilinear function of the subject and object embeddings

is learned to classify facts [49]. That means that while entities are represented by vectors e ∈ Rd

for some integer d, relations are represented by entire matrices R ∈ Rd×d. This allows the scoring

function to be defined as follows:

φ(s,R,o) = σ
(
sTRo

)
, (2.7)

where σ(·) is a sigmoid nonlinearity.

This method achieved state-of-the-art results on benchmarks at the time, and it has desirable

properties for exploiting certain common patterns in knowledge graph datasets [29]. However,

learning arbitrary matrices for each individual relation comes with some disadvantages: it can

allow the model to overfit to the training data, and makes high-dimensional embeddings very

memory-intensive for large-scale knowledge graphs. This motivated a line of research into similar,

but more restricted, linear models [68, 62, 6].

TuckER

TuckER is a linear model that generalised several popular earlier models, including RESCAL.

Instead of representing relations as matrices that combine the entity embedding vectors e ∈ Rde ,

relations are represented by vectors r ∈ Rdr , and a global rank-3 tensor W ∈ Rde×dr×de is used to

combine them:

φ(s, r,o) = σ(
(
W ×1 s×2 r ×3 o

)
= σ

(∑
ijk

Wijksirjok
)

(2.8)

One way to view this is to consider W as set of dr slices each representing a RESCAL-style relation

matrix. Reducing W with r first gives M (r) = W ×2 r as a linear combination of these slices: r

simply gives the weights associated with each slice of W for the given relation.
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This effectively allows weight-sharing between different relations, which is often useful, as the

different relations are sometimes based on similar interactions between entities. Furthermore,

with dr << de × de, it mitigates both the overfitting and the memory scaling issues of RESCAL.

Combined with the smart use of regularisation methods such as dropout and batch normalisation,

this allowed TuckER to achieve state-of-the-art results on several benchmarks.

2.2.3 Complex query answering methods

In this section, we review the Graph Query Embedding (GQE) framework for complex query an-

swering proposed by Hamilton et al. [28], which will be of particular importance for us in Section

3.3. We then briefly discuss the some of the primary challenges involved, and more recent ap-

proaches to solving them.

Graph Query Embedding

Graph Query Embedding (GQE) is one of the first complex query answering methods on knowledge

graphs [28]. It can predict entities satisfying a certain class of logical queries that we will call tree

conjunctive queries, which can be defined recursively as follows:

q(x) := ri(x, ej)

| ∃y . ri(x, y) ∧ q′(y)

|
∧
k

q′k(x)

(2.9)

where r(s, o) holds if (s, r, o) is a fact; ri are fixed relations and ej are fixed entities; q′(·) are

arbitrary subqueries of the same form.

These queries can be seen as trees where the leaves are anchored to known entities. The inner

nodes should be mapped to some unknown entities (not necessarily uniquely) in a way that respects

the edge relations, and our task is to find nodes that can likely stand as the root in such a structure.

Example 3. Consider the following query:

q(x) = ∃y.r0(x, y) ∧
(
r1(y, e1) ∧ r2(y, e2) (2.10)

This is built up by using all cases of the above definition. q(e∗) holds for some entity e∗ if it is

related by r0 to some other entity that is related by r1 to e1 and by r2 to e2.

Remark 2. Our presentation differs slightly from that of Hamilton et al. Notably, they allow

the structure given by the query relations to be a directed acyclic graph (DAG) rather than a

tree; however, this can be represented in our tree conjunctive query form as well by duplicating

nodes with multiple incoming edges. Implementing this in a naive way can be very inefficient
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compared to a DAG-based representation for large queries, but the two approaches are equivalent

on the conceptual level, and the tree-based perspective will be more useful for our discussions.

Furthermore, all queries involved in their experiments were in fact tree conjunctive queries.

The GQE method is based on recursively defining embeddings Jq(·)K ∈ Rd for queries in the

same space as the entity embeddings ei ∈ Rd, representing where the model expects to find

embeddings of entities that satisfy the query. Whether an entity ei satisfies a query q is then

predicted based on the cosine similarity of their embeddings ei, Jq(·)K.

All that remains is to give an interpretation to the query embeddings Jq(·)K. Based on linear

methods such as RESCAL, Hamilton et al. represent each relation with a matrix R(i) ∈ R and

define the following:

Jri(·, ej)K = R(i)ej (2.11)

J∃y . ri(·, y) ∧ q′(y)K = R(i)Jq′(·)K (2.12)

Finally, the interpretations of conjunctions was chosen to be a very general neural aggregator

inspired by recent deep learning work on sets [70]:

J
∧
k

q′k(·)K = WΨ
(
{NN(Jq′k(·)K)}

)
, (2.13)

where NN is a multi-layer perceptron, Ψ is a simple symmetric aggregation function such as

elementwise sum, mean, min or max, and W is an additional linear transformation.

Hamilton et al. also showed that GQE has desirable theoretical properties. Given a set F of

known training facts, let EF,q be the set of entities that a query q verifiably holds for based on

facts in F . With sufficiently high embedding dimensions, for any F , there is a configuration of

all embeddings such the cosine similarity between Jq(·)K and any entity embedding ei is positive if

and only if ei ∈ EF,q.

A brief outline of their proof: by setting d to be the number of entities, the entity embeddings

ei can be set to be computational basis vectors. The relation matrices R(i) can then be boolean

adjacency matrices: R
(i)
jk = 1 if ri(j, k) holds, 0 otherwise. The conjunction aggregation should be

a simple min function. It is then straightforward to recursively show that all query embeddings

Jq(·)K will be boolean vectors directly representing the set EF,q, and these have the expected cosine

similarities with each ei.

Other query answering methods

Since Hamilton et al.’s work on complex query answering, many new complex query answering

approaches have been proposed. They all looked for ways to overcome the limitations of vector

spaces for representing the logical structure of queries – since they can be combined with logical
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operators, a good embedding method for a large class of queries would have to implement operations

such as negation and disjunction in the space of query embeddings in addition to conjunctions.

We briefly review some noteworthy methods.

Embed2Reason [25] is inspired by quantum logic [12], an unusual formal logic that represents

logical clauses as vector spaces corresponding to the structure of quantum observables. Note that

although this is also a quantum-inspired method, their approach is quite different from what we

explore in this project. In Embed2Reason, queries are mapped to axis-aligned linear subspaces

going through the origin, and entities satisfying a query are expected to be inside the corresponding

subspace. These subspaces are learned via vectors with a loss term that is minimised for binary

vectors: a ‘1’ at some position denotes that the subspace extends along that dimension, while a ‘0’

means that it does not. Logical operations can be effectively implemented bitwise on such vectors.

This gets us something close to an intuitive logical structure, but it does differ from normal classical

logic: for example, the disjunction of two subspaces A,B is the smallest linear subspace containing

both of them, which includes vectors that are not inside either of A and B.

Query2Box is based on embedding queries as high-dimensional ‘boxes’, or hyper-rectangles,

and expecting entities satisfying a query to be inside the corresonding box [52]. This has desirable

properties for handling logical constructions: conjunctions can be represented as intersections, and

top-level disjunctions can seen as multiple queries, each with their own hyper-rectangle. This made

it possible to effectively represent a large class of queries in disjunctive normal form, and provide

great predictions.

Arakelyan et al. work around the problem of finding a query embedding space suitable for

encoding logical structure by avoiding query embeddings entirely. Instead, they propose Complex

Query Decomposition [3]: they take link predictors trained for predicting individual edges, and

use these to score potential embeddings for the query variable and all existentially quantified

variables. Optimisation methods are used to find embeddings that the link predictors consider

likely to satisfy all the required relations. They propose two variations of this idea. Firstly,

a continuous optimisation method where gradient descent is used to find an optimal vectors in

the entity embedding space, then they look up entities that are closed to the embedding for the

query variable found through gradient descent. Secondly, they consider a discrete combinatorial

optimisation approach, where a heuristic beam search method is used for finding good assignments

of entities for each variable.
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Chapter 3

DisCoCat as a Knowledge Graph Model

In this chapter, we will discuss the application of DisCoCat methods to the knowledge graph

embedding tasks of link prediction and complex query answering.

By mapping facts in a knowledge graph to sentences in a restricted subset of natural language,

we can apply natural language processing methods to KGE tasks. Unlike most NLP models,

DisCoCat’s grammar-based approach ensures that we do not lose the structure of the KGE context

through this reduction.

This mapping leads to new derivations of existing methods: we find that applying DisCoCat

to the task of link prediction is equivalent to the RESCAL model discussed in Section 2.2.2, and

discuss how other linear models can also be seen from this perspective. This also gives a new

perspective on some recently proposed quantum computing methods for link prediction [39].

For the task of complex query answering, we give a class of queries that can be analysed using a

DisCoCat encoding of relative pronouns [54]. This correspondence leads to a variant of the Graph

Query Embedding model discussed in Section 2.2.3.

3.1 Embedding knowledge graphs in natural language

It is very natural to represent facts in a knowledge graph as sentences: if entity s represents Alice,

o is Bob, and r is the relation ‘likes’, then the fact (s, r, o) means “Alice likes Bob”. More generally,

we can represent entities as nouns or noun phrases, relations as verbs or verb phrases, and write

facts as simple sentences of the form “[subject] [verb]s [object]”. Complex queries can also be

represented using more complex sentences, as we will discuss in Section 3.3.1.

This suggests a reduction of knowledge graph tasks to natural language tasks. Given a natural

language learning algorithm A that can be trained to classify sentences, we can build a model for

link prediction. We map the entities to nouns and the relations to verbs, turn all facts into simple
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sentences, and train A to classify them as true or false. At test time, the held-out facts can be

similarly encoded as sentences and run through the model.

Of course, just because we can represent a task in natural language, that does not mean that

NLP methods are well-equipped to handle them. However, using DisCoCat to classify sentences

generated by this reduction has desirable properties: due to the grammar-based nature of DisCo-

Cat, and the restricted grammatical forms of our sentences, this mapping results in algorithms

that interact well with the structure of the knowledge graph, and are not inherently linked to the

unstructured domain of natural languages. In fact, this mapping naturally leads to derivations of

well-known successful KGE approaches as we will see in the following sections.

3.2 DisCoCat and link prediction

In the following sections, we will be using DisCoCat for binary classification of truthiness, so our

sentence embedding space will have dimensionality ds = 1. As noted in Remark 1, this means we

can treat verb embeddings as dn × dn matrices, where dn is the noun embedding dimensionality,

and remove the sentence embedding wires from our diagrams.

3.2.1 Linear knowledge graph embeddings as a special case of DisCoCat

If we apply DisCoCat to the simple sentences that we get from encoding knowledge graph facts,

we get sentence diagrams of the following form:

s r o

If our word embeddings are arbitrary real-valued vectors/matrices of the appropriate shape, this

gives us exactly the same calculation that the RESCAL model would do, as discussed in Section

2.2.2! This can be seen as DisCoCat generalising later knowledge graph embedding methods.

Other linear models from a diagrammatic perspective

Other linear KGE models can be seen as different proposals for the ‘inner wiring’ of word embed-

dings. For example, the TuckER method is neatly summarised by the following diagram:

s R o
φ(s, r, o)

R
=

W
r

=
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3.2.2 Potential for quantum execution

One of the motivations behind DisCoCat is the possibility of execution on quantum computers,

which can have benefits for large tensor computations. In the case of the sentences we get from the

KGE task, this corresponds exactly to the fully parameterised Quantum Circuit Embedding model

proposed by Ma et al. independently of DisCoCat literature [39].

In this method, each entity e is represented as a state |ψe〉 and each relation r as a unitary

Ur, all produced by parameterised quantum circuits (circuits with a fixed structure involving

parameterised gates such as Z-rotations, such that optimising those parameters can lead to effective

embeddings). To classify a fact (s, r, o), we need to estimate the inner product 〈ψo|Ur |ψs〉, which

can be done efficiently by the swap test [17].

Since Ma et al. propose that the circuit depth should scale linearly with the number of qubits q,

the cost of training and running the model scales logarithmically with the dimensionality 2q of the

state space. This makes it possible to train and execute this RESCAL-like model efficiently with a

seemingly larger state space than in the case of classical methods. However, the dimensionality of

the subspace actually representable by the shallow parameterised circuits scales with the number of

circuit parameters, which is limited. It might be the case that such a subspace of the exponentially

large Hilbert space has beneficial theoretical or practical properties – perhaps if any vector in the

entire space can be approximated to a suitable degree, the result will behave similarly to classical

models with an exponentially large embedding space, despite the reachable subspace being much

more limited. However, it is currently not clear whether there would be such advantages.

3.3 DisCoCat and complex query answering

In this section, we will derive a method for answering tree conjunctive queries as defined in Equation

2.9 using DisCoCat. We map conjunctive queries to verb phrases in natural language, discuss

suitable logical representations of the function words in these phrases, and describe the resulting

algorithm. The result corresponds to a special case of the Graph Query Embedding method

discussed in Section 2.2.3, with a conjunctions handled via a certain fixed operator in place of the

learnable aggregation function in Equation 2.13. Importantly, the desirable theoretical properties

discussed in Section 2.2.3 for GQE still hold for this special case.

Note that there is existing work on representing conjunctive queries in DisCoCat models: Felice

et al. considered closely related problems about answering conjunctive queries [23]. However, they

focused on exact calculation of satisfactory entities based on a known set of facts rather than

approximate learning-based approaches for incomplete knowledge graphs, and looked at a much

less restricted class of queries that they showed to be NP-complete.
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3.3.1 Conjunctive queries as sentences

To define natural language phrases for any tree conjunctive query, we define a linguistic interpre-

tation mapping each relation r to a transitive verb JrKL and each entity e to a noun JeKL as before,

and furthermore we will map each query q(·) to an intransitive verb phrase Jq(·)KL as follows:

Jri(·, ej)KL = “JriKLs JejK′′L

J∃y . ri(·, y) ∧ q′(y)KL = “JriKLs somebody that Jq′(·)K′′L

J
∧
k

q′k(·)KL = “Jq′1(·)KL and . . . and Jq′n(·)K′′L

(3.1)

Example 4. Consider the query

q(x) = ∃y . L(x, y) ∧ (K(y, a) ∧H(y, b)), (3.2)

where a, b are entities and L,K,H are relations with

JaKL = “Alice”, JbKL = “Bob”, (3.3)

JLKL = “loves”, JKKL = “knows”, JHKL = “hates”. (3.4)

Then Jq(·)KL = “loves somebody that (knows Alice and hates Bob)”, with brackets only added for

disambiguation.

Remark 3. Some sentences, such as the above example, are grammatically ambiguous without

parentheses. We will not be concerned with this, sentences will implicitly be treated as appropriate

parse trees rather than sequences of tokens.

Answering queries then corresponds to answering “Who Jq(·)KL?′′. As discussed in multiple

DisCoCat works [23, 19], if sentence embeddings represent truthiness, we can simply answer this

by finding the entity e that maximises the inner product 〈e|q〉 where |e〉 , |q〉 are the embeddings

of the entity and the verb phrase respectively. So we need to calculate the embedding |q〉. E.g.,

for our Example 4, this is given by the following diagram:

loves that knowssb Alice and hates Bob

3.3.2 Encoding function words

Besides the words representing entities and relations, the sentences we consider contain the words

“that”, “and”, and “somebody”, which we consider function words. In this section, we will propose

specific representations for these words based on prior work that have desirable logical properties.
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Encoding “that”

For the relative pronoun “that”, we follow the proposal of Sadrzadeh et al. [54]. In the case of

a 1-dimensional sentence space, their construction reduces to
∑
i∈Bn
|iii〉, where Bn is the set of

computational basis vectors for the space of noun/entity embeddings. This is typically represented

with a white dot with three wires in DisCoCat diagrams.

As described by Equation 2.2, this results in the embedding for a phrase of the form “[noun]

that [verb]s”to be given by the elementwise multiplication n� v, where n is the embedding of the

noun and v is that of the verb.

Encoding “somebody”

To encode “somebody”, we observe that in the truth-theoretic setting, the embedding for “some-

body that [verb]s” should be fully aligned with “[verb]s”, because their dot product gives the

truth value of a tautology. For example, the sentence “Somebody that likes Alice likes Alice” is a

tautology. Hence, given we want to satisfy the following for any v:

−−−−−−−→
somebody� v = v, (3.5)

which implies
−−−−−−−→
somebody =

∑
i∈Bn
|i〉. This is typically represented as a white dot with a single

wire.

Encoding “and”

Finally, we need to choose a representation for “and”. To motivate this, consider the following two

phrases:

1. “(somebody that Jq1(·)KLs) that Jq2(·)KLs”

2. “somebody that (Jq1(·)KLs and Jq2(·)KLs)”

Based on the representations of “somebody” and “that”, the first one evaluates to
−−−−−→
Jq1(·)KL �

−−−−−→
Jq2(·)KL, and the second one is equal to

−−−−−→
Jq1(·)KL ×

−−→
and×

−−−−−→
Jq2(·)KL, which is what we are essentially

seeking to define here.

Since these two are intuitively semantically equivalent, we should expect them to be equal

for any query representations (or other verb phrases). This is only achieved if “and” is also

represented by
∑
i∈Bn
|iii〉, just like “that”. This also has the desired property of associativity:

−−−−−−−−−−−−→
A and (B and C) =

−−−−−−−−−−−−→
(A and B) and C =

−→
A �

−→
B �

−→
C .

Note that our choices of function word representations rely on our restricted context: computing

logical meanings over a limited grammar. In general natural language, words such as “and” can

have more complex behaviour that is much harder to capture.
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3.3.3 Deriving a special case of Graph Query Embedding

We can substitute and simplify our diagrams using these constructions. Consider Example 4:

loves knows Alice hates Bob

loves knows Alice hates Bob

=

(3.6)

We can also directly express how this method builds up a query embedding Jq(·)K ∈ Rd from the

learned entity embeddings JeiK = ei ∈ Rd and relation embeddings JriK = R(i) ∈ Rd×d, where d is

the noun embedding dimension of our DisCoCat model:

Jri(·, ej)K = R(i)ej

J∃y . ri(·, y) ∧ q′(y)K = R(i)Jq′(·)K

J
∧
k

q′k(·)K =
⊙
k

(Jq′k(·)K).

(3.7)

The first two of these equations are exactly the same as Equations 2.11 and 2.12 defining GQE,

the only difference is the third one, where we have a fixed aggregator rather than the very general

neural set function in Equation 2.13.

Furthermore, recall the theoretical properties of GQE discussed in Section 2.2.3: for any set of

training facts, an appropriate parameterisation can ensure that exactly the facts derivable from the

known relations will be predicted a positive score [28]. This still holds for our restricted model –

our elementwise product aggregator has the same properties as the min function used by Hamilton

et al. in their construction, that it simulates a bitwise and for boolean vectors. The rest of the

proof summarised at the end of Section 2.2.3 follows without any changes.
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Chapter 4

Summary and Outlook

We have shown how the quantum-inspired NLP method DisCoCat can adapted for solving knowl-

edge graph embedding tasks. The algorithms derived this way turned out to be equivalent to

existing KGE methods – so although this did not lead any proposals for new methods in this

project, it gives a novel perspective on existing work. It is also a surprising observation, since

DisCoCat was proposed earlier [21].

This correspondence could be further explored in future work, cross-pollinating both fields with

new ideas. For example, the category theoretic perspective of the DisCoCat community could be

particularly useful for finding suitable spaces for embedding the logical structures of complex

queries – as discussed in the second half of Section 2.2.3, many existing complex query embed-

ding methods can be seen as ways to overcome the limitations of vector spaces for representing

logic. The diagrammatic representations of monoidal category theory are also a useful tool for

understanding linear KGE models and potentially exploring further alternatives. It even allows us

to reason about higher-rank tensors, which is useful for embedding knowledge hypergraphs, where

some relations might involve more than two entities – a setting that has attracted an increasing

amount of attention in recent years [1, 37].

The connection between DisCoCat and KGE methods also lets us bring ideas from the field of

relational learning to the DisCoCat context. For example, TuckER has achieved great results in the

KG domain, which could motivate an analogous ‘inner wiring’ of DisCoCat word representations.

This could reduce the number of parameters used for high-rank tensors, which is important for

scaling DisCoCat models. Furthermore, the performance of TuckER has been shown to be partly

thanks to smart regularisation methods, such as dropout and batch regularisation used in the

process of tensor reductions [53] – these methods could also be applied to DisCoCat when executed

on classical hardware.
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Part II

Quantum Graph Neural Networks
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Chapter 5

Background and Related Work

5.1 Graph neural networks

5.1.1 Learning over graph-structured data

In the last decades, we have seen the development of a wide range of neural network architectures

designed to operate on different kinds of data. For example, convolutional networks rely on the pixel

grids of images, while recurrent neural networks are used to process sequential data. There is also

a wealth of data with graph-like structure, including knowledge graphs [14], social networks [71],

traffic patterns [26] and molecules [66], which motivated a new class of deep neural networks: graph

neural networks.

It is well-known that the generalization performance of machine learning models heavily de-

pends on their inductive bias: architectural decisions that allow a learning algorithm to prioritize

solutions satisfying certain desired criteria, independent of the observed data [46]. For example, for

processing image data, one desirable property is the so-called translation-invariance which ensures

that the patterns detected will remain valid to potential shifts. Even regularisation terms can be

seen as a form of inductive bias [30].

In the context of graphs, the desirable property is invariance: the ordering of nodes and edges in

the input should be considered a representational detail that does not affect our predictions [8]. We

will formalize the properties to ensure such invariances for different graph representation learning

tasks, which can be grouped under two categories of graph-level and node-level tasks.

Graph-based tasks include supervised graph classification or graph regression, where a large set

of individual graphs are given, usually with feature vectors associated with each node, defining

node features. A ground-truth label is known for each graph, which could be a Boolean or other

discrete value for classification tasks, or a real number for regression tasks. For example, we might

want to classify molecular graphs by whether they are toxic (true) or not (false), an example of
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binary classification [66]. After training on a subset of the available data, we evaluate the model

on a held-out test set to see how well it generalises.

In graph classification/regression, we want to restrict our models to learning invariant functions,

which provide the same output upon permuting the nodes of a graph. Formally, given a graph

with adjacency matrix A, we say a function f is invariant if for any permutation matrix P we

have:

f(A) = f(P TAP ). (5.1)

In principle, a less structured model that can represent arbitrary functions (e.g. multi-layer

perceptrons [32, 31]) could potentially learn this invariance property from the data it’s given.

However, this would typically require far more training data and make it harder to generalise to

unseen graphs, so it is better to build this inductive bias into the architecture itself [8, 29].

In node-based tasks, we need to predict some property of each individual node of a given graph.

Similarly to graphs, we can distinguish between node classification, where the output is a Boolean

or one of a small finite set of possible labels; and node regression, where we predict real numbers.

In most common benchmarks, one large graph is given, but only a subset of node labels are known,

and the task is to predict the missing labels. We can further split these problems into transductive

and inductive settings: in a transductive setting, the unlabeled nodes are present during training,

while in the inductive case they are only added at test time [69, 29].

In node classification/regression, we want our models to learn equivariant functions, where a

permutation of the input nodes results in the same permutation of output predictions, so for any

permutation we have:

P T f(A) = f(P TAP ). (5.2)

5.1.2 Message-passing neural networks

Early work approached the problems of effective graph representation learning from many direc-

tions, with perspectives from dynamical systems [57], signal processing [16], and convolutional

neural networks [34] among others. Eventually the field arrived at a framework of highly effec-

tive methods called Message-Passing Neural Networks (MPNNs) [27] that iteratively update the

representations of each node based on their local neighbourhoods.

In an MPNN, each node v is assigned some initial state vector h
(0)
v based on its features. This

is repeatedly updated based on the current state of its neighbours N (v) and its own state. A

function aggregate(·) combines the multiset of states from the neighbours into a message vector

mN (v) passed to the node v, then an update(·) function combines the message with the current

state to get the next one. This is repeated over several layers, usually involving different learned
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functions aggregate(k),update(k):

h(k+1)
v = update(k)

(
h(k)
v ,aggregate(k)

(
{{h(k)

u | u ∈ N (v)}}
))

(5.3)

= update(k)
(
h(k)
v ,mN (v)

)
, (5.4)

where the double braces {{·}} refer to a multiset.

Observe that each MPNN layer is equivariant by construction: we map the feature vectors to

a new vector for each node, and at no point are we referring to the ordering of nodes or edges –

we treat them as sets.

The specific form of the aggregate and update functions varies across approaches, but it is

always a differentiable function with learnable parameters that can be trained like other neural

network architectures. After several such layers have been applied, the final node embeddings

might be used for predicting individual node-level properties, or they might be pooled to form a

graph embedding vector to predict properties of entire graphs. The pooling often takes the form of

simple averaging, summing or elementwise maximums, but neural methods such as deep sets [70]

are also used: the only requirement is that it has to be an invariant function.

A wide range of highly effective models have been proposed within this framework, making dif-

ferent trade-offs and bringing ideas from various neural methods: Graph Convolutional Networks

were inspired by convolutional neural networks [34], Graph Attention Networks brought attention

mechanisms to the graph domain [63], and Gated Graph Neural Networks used recurrent neural

networks to construct their update function [36], among many others. While the choice of aggre-

gate and update functions leads to important differences between these architectures, the shared

underlying structure also creates similarities in their expressivity as we will see later.

5.1.3 Invariant and equivariant graph networks

Maron et al. took a different approach to graph-based learning [42]: they considered information

about a graph encoded in arbitrary k-order tensors indexed by node identifiers along each dimen-

sion. An adjacency matrix is then a simple example in the k = 2 case, while individual node

features can be described with k = 1.

They generalised the invariance/equivariance conditions of Equations 5.1 and 5.2 to higher-

order tensors A ∈ Rnk

, where n is the number of nodes in the graph. They defined a reordering

operator: P ? A is defined to be the tensor that results from renumbering the nodes according to

the permutation given by P ∈ Bn2

. A function f is then invariant if f(P ? A) = f(A) for any

P ,A, and equivariant if f(P ? A) = P ? f(A).

To define their model, they used invariant/equivariant linear layers: linear transformations of

the form Li ∈ Rnki×nki+1
that satisfy the respective conditions. The architecture was composed
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as follows:

F = MLP ◦ I ◦ Ed ◦ σ ◦ · · · ◦ σ ◦ E2 ◦ σ ◦ E1, (5.5)

where Ei are equivariant linear layers for each 1 ≤ i ≤ d, I is an invariant linear layer, σ repre-

sents an elementwise nonlinearity, and MLP is a multi-layer perceptron to process the aggregated

result.

It is not obvious how to enforce the invariance/equivariance equations over linear maps, so this

became their main focus. They showed that this can be achieved by having each weight depend

only on the equality pattern of the indices identifying the specific tensor element, and that such a

parameterisation can represent any invariant/equivariant linear layer. Intuitively, this ensures that

applying a permutation to all nodes leaves them seeing the same set of weights, since the equality

patterns are unchanged.

Example 5. Consider tensors of order k = 1 in both the input and the output (which are simply

vectors), in which case our linear layer is a matrix M , and we want to characterise the subclass

of equivariant matrices. Each parameter Mij is identified by two indices i, j, which can have just

two equality patterns: i = j or i 6= j. So the space of such equivariant linear layers are just

two-dimensional: for all i, j, Mij = α1 if i = j, and Mij = α2 for i 6= j, for some α1, α2.

In general, this result implies that once the size of the graph is greater than the order k of the

tensors, the dimensionality of the space of equivariant/invariant linear layers does not increase: it

is bounded by the number of equality patterns over the indices of the tensors defining each layer.

This is the same as the number of partitions of a finite set, also known as the Bell numbers b(k).

Invariant layers from an input tensor of order k to a real output are given by tensors of rank k, so

the dimensionality of the space of such invariant layers is b(k); equivariant layers between input

and output tensors of rank k are given by tensors of rank 2k, so the dimensionality of their space

is b(2k).

5.2 Expressive power of graph neural networks

5.2.1 The Weisfeiler-Lehman isomorphism test and GNNs

Despite their successes, MPNNs and many other GNN architectures have been shown to have

limitations: there are functions over graphs that they can never represent at any finite width and

depth, no matter how we set their parameters. This was shown by relating the expressive power of

MPNNs to the distinguishing power of the Weisfeiler-Lehman (WL) test for graph isomorphism [67,

43].
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The WL test [65] was originally developed as an efficient heuristic algorithm for determining

whether two graphs are isomorphic; this is a hard problem with no known polynomial-time solution

(see e.g. Babai for related breakthrough result [5]), so efficient methods that work for large classes

of graphs are useful. In its simplest, 1-dimensional form (1-WL test), the algorithm iteratively

updates labels assigned to nodes. Given two graphs G1 and G2, initially, node labels are determined

by their features in the input; then, at each step, every node label gets updated via an injective

hash function based on its current label and its neighbours’ labels. Note the similarity to Equation

5.3:

h(k+1)
v = hash

(
h(k)v , {{h(k)

u | u ∈ N (v)}}
)

(5.6)

Once this iteration stops refining the node states further, i.e., the number of distinct labels stops

increasing for both graphs, the algorithm halts. (This can be shown to always happen in at most

n steps for a graph with n nodes.) If there is some label occurring with a different frequency in G1

or G2 at this point, they are certainly not isomorphic; otherwise the 1-WL test cannot distinguish

these graphs, and they are plausibly isomorphic.

Figure 5.1: The simplest example of

two graphs indistinguishable by the 1-

WL test.

As the simplest example of graphs that are not 1-

WL distinguishable, consider Figure 5.1: G1 consisting

of two 3-cycles, and G2 being a 6-cycle, with all nodes in

both graphs having the same features. Initially they are

all assigned some label l0. All nodes have the same label

and they all have exactly two neighbours also sharing this

label, so they are all updated to some hash(l0, {{l0, l0}}) =

l1, and still all the labels are the same. The algorithm

would stop here since no refinement happened; but even

if it continued, further iterations could never break this

sameness. G1 and G2 will end with the same 6 labels in

each graph, so they cannot be distinguished.

Note the similarity between this algorithm and the

update mechanism of MPNNs. In the best-case scenario, the aggregate and update functions of an

MPNN might combine to form an injective function, in which case it can give different predictions

for any two graphs that are 1-WL distinguishable (assuming it also has sufficiently many layers).

But it can never go beyond this: if two graphs appear the same to the 1-WL test, any MPNN will

predict the exact same outputs for them regardless of how it was trained. For example, due to the

example above, an MPNN can never learn to classify graphs by whether they contain a 3-cycle or

not.

This result inspired many new methods. Xu et al. proposed the Graph Isomorphism Net-
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work [67] (GIN), an MPNN designed to learn injective aggregate-update functions to maximise

expressivity. The GIN aggregate-update functions are defined as follows:

h(k)
v = MLP(k)

((
1 + ε(k)

)
h(k−1)
v +

∑
u∈N (v)

hu
)

(5.7)

They showed that injective functions of (element, multiset) pairs can be given in this form for

many suitable choices of ε(k) for bounded-size multisets from a countable domain. Hence by the

universal approximation theorem of MLPs, GINs can learn injective aggregate-update functions

over bounded-degree graphs with countable node feature spaces, reaching the full 1-WL expressivity

achievable by any MPNN.

Others worked on methods to go beyond 1-WL: Morris et al. proposed higher-order GNNs

inspired by higher-dimensional variants of the WL test, which are more expressive but prohibitively

computationally expensive on most datasets [48]. Their later work proposed variants leveraging the

sparsity found in many real-world domains, making them practical in the regime of small graphs,

e.g., molecular learning, and showed great empirical results [47]. Maron et al. showed that their

invariant and equivariant graph networks (discussed in detail in Section 5.1.3) also have expressivity

tied to 1-WL and its higher-order variants (depending on the order of the tensors involved), and

proposed Provably Powerful Graph Networks, a relatively efficient higher-order GNN based on the

expressivity of matrix multiplication [43] with 2-WL expressivity, but their O(n3) time complexity

and O(n2) space complexity is still fairly limiting. So despite this promising line of research, the

most popular methods for learning on graphs are still MPNNs.

5.2.2 Node classification from a logical perspective

Barceló et al. improve on the WL results about MPNNs by considering what node classifiers

MPNNs can represent and relating this to sentences in appropriately chosen logics [7].

We can use logics (such as first-order logic) to describe graphs by taking the domain elements

to be vertices, and using a binary relation E(·, ·) to represent the edges. Then, sentences with

exactly one free variable can be viewed as logical node classifiers:

Example 6. The sentence

φ(x) = ∃y.
(
y 6= x ∧ E(x, y) ∧ ∃z.(z 6= y ∧ z 6= x ∧ E(y, z) ∧ E(z, x))

)
(5.8)

holds for a vertex v (to be instantiated in place of the variable x) if and only if it is in a triangle.

We can formally relate the expressive power of MPNNs to logical classifiers. We say an MPNN

M making binary predictions M(G)v for a node v of a graph G captures a logical classifier φ(x) if

for all vertices v of the graph, M(G)v = φ(v). And a class C of models (e.g. MPNNs) captures a
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logic L if for any logical classifier φ(x) defined in that logic, there exists some model M ∈ C that

captures φ(x).

The primary result of Barceló et al. concerns the logic C defined by adding counting quantifiers

∃≥kx to first-order logic, where the sentence ∃≥kx.φ(x) is true if there exist at least k different

elements x such that φ(x) holds. For example, the sentence ∃≥5y.E(x, y) holds for nodes x with

degree at least 5.

More specifically, they focused on C2, a restriction of C where only two variables can be used

(so e.g., the triangle example involving x, y and z is not in C2 – in fact, such a classifier cannot be

defined there). This logic is known to be closely linked to the 1-WL test: the 1-WL test assigns

different labels to two nodes in a graph if and only if those nodes can be distinguished by some

C2-classifier [18]. So based on previous results, it is clear that MPNNs (of the standard form given

in Equation 5.3) cannot capture any logical classifiers that cannot be represented in C2.

However, the reverse does not follow: although sufficiently powerful MPNNs can reproduce the

labels of the WL test, they can not reproduce certain labeling schemes that are refined by the

algorithm.

Example 7. Consider the classifier φ(x) = ∃y.¬∃x.E(x, y). Note that x is only used within a

quantified scope, so the free variable x is unused and this logical classifier assigns the same thing

to all nodes: whether there is an isolated vertex in the graph.

However, MPNNs cannot propagate the information about its existence, since they only pass

information along edges. In fact, Barceló et al. show that the logical classifiers captured by standard

MPNNs are exactly those of graded modal logic, a strict subset of C2 where every existential

quantifier has to be ‘guarded’ by a relation asserting the existence of an edge.

To improve on this, Barceló et al. propose MPNNs with global readout, or ACR-GNNs in

their nomenclature (with ACR standing for Aggregate-Combine with Readout). These extend the

standard MPNN equation as follows:

h(k+1)
v = update(k)

(
h(k)
v ,aggregate(k)

(
{{h(k)

u | u ∈ N (v)}}
)
,

readout(k)
(
{{h(k)

u | u ∈ V}}
)) (5.9)

At each step, an invariant readout function aggregates the current state of all nodes and the

result of this aggregation is passed to all nodes. They show that this extension allows MPNNs

to capture all C2-classifiers. They provide a construction based on marking whether each node

satisfies certain subexpressions of the classifier in their state, aggregating the total number of nodes

satisfying clauses in existential quantifiers into the readout, and using this to relay information

about non-adjacent nodes. In each layer, subexpressions with increasing quantifier depths are
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effectively ‘evaluated’ at each node, so we get the required result after a number of layers equal to

the quantifier depth.

Finally, they show that it even suffices to have the readout calculation only in the final layer.

To do this, they use the non-final layers to collect all the possible information about each node’s

neighbourhood into its state, using integer functions defined in terms of prime factorisations to

squeeze all this information into a single dimension of the state, essentially calculating a Gödel

encoding of its neighbourhood1. The final layer’s readout then aggregates how many times any

substructure up to a certain size occurs in the graph, which is combined with local information at

each node to do the classification. The size of the neighbourhoods needed is still a function the

quantifier depth of the logical quantifier in question.

5.2.3 The power of randomisation

A recent approach to increasing the expressivity of GNNs relies on randomly initialising some or

all node features [56, 2]. Although this makes the model outputs nondeterministic, we can talk

about their capacity to approximate deterministic functions.

For some deterministic Boolean function f over arbitrary graphs, a configuration f̂ of a ran-

domised model is a δ-approximation of f if for any graph G, f̂(G) = f(G) with probability at least

1 − δ. If such a configuration exists for arbitrarily small δ, we say that the randomised model

can represent f . We can also talk about real-valued functions by requiring the output f̂(G) to be

within some ε with probability at least 1− δ.

Sato et al. showed that by randomly initialising some features of MPNNs, sufficiently large

models can represent any substructure-counting function with high probability [56]. This is sig-

nificant because deterministic MPNNs cannot even tell whether a graph contains a triangle, as

discussed above. Abboud et al. improved on this result in the case of MPNNs with a readout layer

(as in Equation 5.9): they showed that such MPNNs can approximate any Boolean or real-valued

function over graphs with arbitrary precision with high probability [2].

Both of these results are intuitively based on the idea that random node initialisation with suf-

ficiently many parameters will assign unique initial states to different nodes with high probability.

This can act as a sort of ‘identifier’ for each node: for example, after 3 rounds of message-passing,

a node might be able to tell that its own identifier was seen at a 3-hop distance, so it must be in

a triangle [56]. For arbitrary functions over graphs, Abboud et al. give a construction using the

C2 logic analysed by Barceló et al., based on the fact that any graph with all nodes having unique

1Although this can indeed be approximated by neural networks in principle, it also relies on arbitrary-precision

arithmetic for arbitrary-size graphs. To fit such an encoding into a fixed amount of bits, a restriction to degree-

bounded graphs is needed.
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random features can be identified by a C2-sentence.

One disadvantage of these approaches is that they make it harder to train the models. The

model needs to see many different random labelings to eventually become robust to this variation

and stop it from influencing the predictions in undesirable ways. The extent of this effect can be

mitigated by using fewer randomised features, but this comes at the cost of making it more difficult

to discern properties that need this randomisation [2].

5.3 Quantum machine learning

In recent years, the field of quantum computing has made significant steps towards practical

usefulness, which has sparked increasing interest in potential applications. Although fault-tolerant

quantum computers will likely not be available soon, there is a lot of research into more near-term

applications of the noisy intermediate-scale quantum computers (NISQ) available today and in the

foreseeable future.

One area where many people hope for the NISQ devices to have an impact is machine learn-

ing [51, 10]. Although the current state of the art of quantum hardware is not sufficient to gain an

advantage over classical methods (despite recent achievements of quantum supremacy for carefully

selected tasks [4]), there is already plenty of research based on small-scale experiments done by

either classical simulation or on the currently available small-scale noisy hardware.

Most of these quantum machine learning proposals rely on parameterised quantum circuits:

circuits where the structure is fixed, but individual gates include free parameters such as Z(α)-

rotations that can be tuned for a specific task [59, 10]. These can be used in a training loop very

similarly to classical machine learning architectures: training samples are encoded into the input

state, then the circuit is run, measurements are made and compared with the ground-truth labels.

Lacking the possibility of standard backpropagation, there are alternative ways of calculating

gradients [60, 11], and gradient-free optimisation methods are also used [50].

5.3.1 Quantum alternatives to GNNs

Within the field of quantum ML, a few methods have already been proposed for learning on graph-

structured data. We briefly survey existing proposals, and in Section 6.2 we will relate them to

the framework we introduce.

Beer et al. train quantum models for node prediction that are run individually on each node,

with a graph-based loss term enforcing that adjacent nodes should get similar predictions [9].

Their framework works with any kind of quantum machine learning architecture, so this could

be a promising way to enforce some regularity over the space of inputs of any model, and might
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be applicable to semi-supervised node classification tasks where only some of the node labels are

available. However, individual predictions are not influenced by adjacent nodes at inference time,

which seriously limits expressivity, and the method cannot be applied for graph-level tasks.

Verdon et al. propose an intuitive analogue of classical GNNs [64]. They consider the total

Hilbert space of their model to be a product of subspaces for each node, i.e., each node is assigned

a set of qubits in case of typical discrete-variable quantum computing. They parameterise their

circuits indirectly through a Hamiltonian defined as the sum of one and two-node operators that

get applied based on the adjacency matrix of the given graph.

Although their general model includes the ability to learn individual weights for each node,

for our project we are primarily interested in their Quantum Graph Convolutional Neural Network

(QGCNN) variant, where the operators applied at each node are given by the same parameters.

Combined with the fact that edge operators are applied to different qubits appropriately if we

reorder the nodes of the graph, this makes their model equivariant. We discuss their setup in more

detail in Section 6.2.2 where we also relate it to other possible models.

Finally, Zheng et al. very recently proposed a quantum graph convolutional neural network

based on a similar premise, but they directly parameterise two-node unitaries to apply for each

edge [72]. This is similar to approaches we discuss in Section 6.2.3, with the caveat that they use

arbitrary unitaries which might not commute in general, and this breaks equivariance.

All of these models come with small-scale experiments, but little discussion of possible design

choices for such models or theoretical considerations. In the following chapters, we consider possible

equivariant quantum models and analyse the expressivity of interesting subclasses.
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Chapter 6

Quantum Graph Architectures

6.1 Equivariant Quantum Graph Circuits

6.1.1 Model setup

Figure 6.1: Overview of our model

setup. A product state is prepared

based on individual nodes, then an

EQGC C is applied, the result is mea-

sured and aggregated by some classical

function f to produce the result.

Similarly to Verdon et al. [64] and Zheng et al. [72], we

represent nodes in a quantum circuit as a joint system

given by the tensor product of subsystems for each node.

This lets us model complex interactions via entanglement

between the node states in the exponentially large Hilbert

space of the joint system. For each input graph, we pre-

pare an initial state representing all node features and

want to learn a quantum procedure that maps these to

useful predictions.

We will therefore set the initial state to be a prod-

uct of node states encoding each node’s features: for a

graph of n nodes, each with features encoded in a vector

|vi〉 ∈ Cs for some fixed integer s, the joint state is then

|ψ〉 =
⊗n

i=1 |vi〉 ∈ Csn .

We restrict ourselves to making measurements at the

end of the process, so we wish to learn unitary trans-

formations that map this input to a useful output state

where we can measure each node. Since we focus on graph classification/regression, the results

from the measuring all nodes will be classically aggregated to produce a Boolean or real-valued

prediction.

Importantly, we will allow this unitary to depend on the adjacency matrix of the input graph:
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for example, our model might perform some two-node unitary in the positions corresponding to each

edge. We only enforce that the procedure respects the graph structure by behaving equivariantly:

permuting the nodes of a graph should permute the output the same way.

This brings us to our definition of Equivariant Quantum Graph Circuits (EQGCs):

Definition 1. An EQGC is an arbitrary function C(·) mapping an adjacency matrix A ∈ Bn×n

to a unitary C(A) ∈ Csn×sn for any n that behaves equivariantly in the following sense:

For any permutation p over n elements, consider its usual representation by P ∈ Bn×n as well

as a larger matrix P̃ ∈ Bsn×sn that reorders the tensor product, mapping any |v1〉 |v2〉 . . . |vn〉 with

|vi〉 ∈ Cs to |vp(1)〉 |vp(2)〉 . . . |vp(n)〉. Then C must satisfy:

C(A) = P̃ TC(P TAP )P̃ (6.1)

Remark 4 (A note on directedness). Unlike many works on GNNs, our definition of EQGCs

allows us to consider directed graphs naturally, and this will also be true of interesting subclasses

we consider later. Of course, we can still easily operate on undirected data by either adding edges

in both directions, or placing extra restrictions on our models. For the purposes of expressivity, we

will still focus on classifying graphs in the undirected case, as this is better explored in previous

works on classical methods.

Measurement and classical aggregation: To predict graph-level properties, we need to per-

form some permutation-invariant aggregation over the nodes. For the purposes of this project,

we limited our analysis to a simple approach: measure each individual node state and perform

invariant aggregation classically. The invariance condition restricts us to only rely on how many

nodes we measured in each of their s possible states, so we assemble this data into a vector in Rs

and apply a learned MLP to a predict a Boolean property. 1

In the rest of this chapter, we focus on exploring and characterising the possible choices of

such functions C(·): Is the dependence on A necessary? What subclasses might we implement

in practice? Can we parameterise them all uniformly, with a fixed number of parameters for

unbounded n?

6.2 Special classes of equivariant quantum graph circuits

6.2.1 Circuits with arbitrary dependence on adjacency matrix

Our definition of EQGCs was very general, allowing the unitary to depend on the adjacency matrix

of a graph via an arbitrary function as long as it acts equivariantly. In principle, this allows the

1Another option would be to do this in the quantum circuit, e.g. by bringing in fresh readout qubits and

entangling them with the state of each node identically; we leave this to future work.
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unitaries given for non-isomorphic graphs to be chosen completely independently. While this gives

us a flexible framework to discuss possible approaches, we clearly need to choose some further

restricted subclass if we hope to inductively generalise to unseen graphs, and to represent models

with a finite number of parameters. 2

The following section discusses some interesting EQGC subclasses that might be good candi-

dates for training graph models, as well as their relations to each other.

6.2.2 Circuits parameterised via Hamiltonians

Unitaries are tricky to parameterise directly: for example, a linear combination of unitaries is not

unitary in most cases. One alternative is to use the fact that any unitary U can be expressed using

its Hamiltonian H, a Hermitian matrix of the same size such that U = exp(−iH). We can let the

Hamiltonian depend linearly on the adjacency matrix, with Hermitian operators applied based on

the structure of the graph:

Definition 2. An Equivariant Hamiltonian Quantum Graph Circuit (EH-QGC) is an EQGC given

by a composition of finitely many layers C = Lk ◦ · · · ◦L1, with each Li for 1 ≤ i ≤ k given as:

Li = exp
(
− i
( ∑
(j,k)∈E

H
(edge)
j,k +

∑
v∈V

H(node)
v

))
, (6.2)

where V, E are the sets of nodes and edges respectively,H(edge) andH(node) are learnable Hermitian

matrices over one and two-node state spaces, and the indexing H
(edge)
j,k ,H

(node)
v refers to the

operators applied at the specified node(s). For example, H
(node)
3 = I ⊗ I ⊗ Ĥ(node) ⊗ I in the

case of n = 4 nodes. This means that if the graph is permuted, the operators will be applied at

changed positions appropriately, hence making the model equivariant.

Remark 5. We could in principle consider more general forms of equivariant Hamiltonians: for

example, we could allow any Hermitian matrix that is also an equivariant layer as explored in

Section 6.3, or add three-node terms for each triangle in the graph based on the adjacency matrix

(or look at even more complex patterns). However, the EH-QGC construction is already very

flexible while limiting multi-node interactions to scale linearly with the number of edges, allowing

for efficient implementation on a quantum computer.

This is closely related to the approach taken by Verdon et al. [64], and their Quantum Graph

Convolutional Neural Network (QGCNN) model. They define the Hamiltonian for a QGCNN layer

as follows:

H =
∑

(j,k)∈E

∑
r∈Iedge

wrÔ
(r)
j ⊗ P̂

(r)
k +

∑
v∈V

∑
r∈Inode

zrR̂
(r)
v , (6.3)

2In fact, we show in Section 6.3.3 that we cannot represent all unitaries over arbitrarily large graphs with a finite

number of parameters even without a dependence on the adjacency matrix.
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where the wr, zr are learnable parameters; the Hamiltonians Ô, P̂ , R̂ are predefined fixed

operators indexed by the fixed sets Iedge, Inode. So a fixed set of node and edge operators is

chosen, and the training process determines their respective weights. Different fixed operators for

any given experiment, and specific instantiations were chosen so that they commute in order to

make the matrix exponential separable.

Using such a more restricted Hamiltonian makes circuit compilation easier and makes it more

feasible to execute such models on today’s noisy intermediate-stage quantum computers. But in

principle, this is not necessary: approximating the more general EH-QGC Hamiltonian with a

circuit would be more complicated and expensive, but would still be doable on a fault-tolerant

quantum computer. We can even construct QGCNNs following Equation 6.3 with a large set

of fixed operators spanning the entire space of one and two-node Hermitian matrices, essentially

recovering Equation 6.2. Therefore for the purposes of our theoretical analysis, we will consider

the general EH-QGC model, but our expressivity results will also apply to sufficiently powerful

QGCNN instantiations as defined by Verdon et al.

6.2.3 Circuits parameterised via commuting unitaries

A similar, but more direct approach would be to consider two-node unitaries instead of Hamilto-

nians and apply the same learned unitary for each edge of the graph. The locality of two-node

unitaries also has the same benefits as the two-node Hamiltonians mentioned previously: the num-

ber of operations scales linearly with the number of edges in a graph. This is also the approach

taken by Zheng et al., but we need to add extra conditions that they do not consider to ensure

equivariance [72].

Specifically, we need to enforce that the order we apply these unitaries does not matter. This

gives us the following commutativity condition for a unitary U :

U

U

=

U

U

(6.4)

Furthermore, note that we might be working with directed graphs or undirected graphs as

mentioned in Remark 4. If the graphs are undirected, we should ensure the following to make sure

the direction of the edge representation does not affect our predictions:

U U= (6.5)
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In the case of directed graphs, we need to satsify the following conditions instead:

=

U

UU

U

(6.6)

=

U

U U

U

(6.7)

U

U U

U

= (6.8)

Of course, such a directed unitary can also be used for directed graphs by applying it in

both directions: in fact, if Equation 6.8 is satisfied, this composition itself satisfies the undirected

Equation 6.5:

W =

U

U

W =
U

U

=

U

U

=

U

U

= W

(6.9)

Equivariantly Diagonalizable Unitary Quantum Graph Circuits

It is not clear whether we can nicely parameterise the space of all such commuting unitaries, but

we can focus on a further subclass.

Definition 3. An equivariantly diagonalisable unitary is a unitary that can be expressed in the

form U = (V † ⊗ V †)D(V ⊗ V ) for a unitary V ∈ Cs×s and diagonal unitary D ∈ Cs2×s2 .

Note that all unitaries can be diagonalised in the form U = P †DP for some other unitary

P and diagonal unitary D. The above is simply the case when P decomposes as V ⊗ V for one

single-node unitary V .
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Using the facts that P † = V † ⊗ V †, that I ⊗D is still a diagonal matrix and that diagonal

matrices commute, we can see that equivariantly diagonalisable unitaries satisfy Equation 6.4:

D

V

=

V

V †V †

VV

V †V †

D

D

V V

V †

V

V †V †

D

=
D

V V

V †

V

V †V †

D

D

VV

V † V †

V V

V † V †

D

=

(6.10)

The directed versions (Equations 6.6, 6.7, 6.8) are similar, since V ⊗V and V †⊗V † commute

with the swap, and then analogous derivations apply.

Note also that a square matrix is unitary if and only if all of its eigenvalues (the diagonal

elements of D) have absolute value 1. We can therefore parameterise these unitaries by combining

arbitrary single-node unitaries V with diagonal matrices D of unit modulus numbers. (If we want

to further add the inductive bias of undirected graphs, we can set D |e1e2〉 = D |e2e1〉 for any

computational basis vectors |e1〉 , |e2〉.)

Definition 4. An Equivariantly Diagonalisable Unitary Quantum Graph Circuit (EDU-QGC) is

an EQGC expressed as a composition of node layers Lnode and edge layers Ledge given as follows

on a graph with node and edge sets (V, E):

Lnode =
⊗
v∈V

Vi = V ⊗|V| (6.11)

Ledge =
∏

(j,k)∈E

Ujk (6.12)

In short, we either apply the same single-node unitary to all nodes, or we apply the same equivari-

antly diagonalisable unitary in the appropriate position for each edge. Since both types of layers

are equivariant by construction, so is their composition, hence EDU-QGCs are a valid EQGC class.
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Relation to EH-QGCs

It can be shown that EDU-QGCs are a subclass of the Hamiltonian-based EH-QGCs discussed in

Section 6.2.2. This is particularly useful for investigating questions of expressivity: we also get a

result about the expressivity of EH-QGCs by showing the existence of EDU-QGC constructions

representing some function.

Theorem 1. Any EDU-QGC can be expressed as an EH-QGC.

To prove this, we consider node layers and edge layers separately and show that both can be

represented by one or more EH-QGC layers. 1.1 proves the case for node layers; 1.2 for a special

subclass of edge layers; finally, 1.3 builds on these two to prove the case for all edge layers.

Lemma 1.1. Any node layer Lnode = V ⊗|V| (as defined in Equation 6.11) can be expressed as an

EH-QGC layer.

Proof. Let |V| = n and let R be the Hamiltonian for V , then H = R⊗n =
∑
v∈V Rv is an

appropriate EH-QGC Hamiltonian (of the form defined in Equation 6.3). We can easily show H

is then the Hamiltonian for the EDU-QGC layer V ⊗n:

exp(−iH) =

∞∑
k=0

(−iH)k

k!

=

∞∑
k=0

(−i)k(R⊗n)k

k!

=

∞∑
k=0

((−iR)k)⊗n

k!

=
( ∞∑
k=0

((−iR)k)

k!

)⊗n
= exp(−iR)⊗n

= V ⊗n

Lemma 1.2. Any diagonal edge layer Ldiag =
∏

(j,k)∈EDjk, with a diagonal unitary applied for

each edge, can be expressed as an EH-QGC layer.

Proof. A diagonal unitary D has a diagonal Hamiltonian R, where Djj = exp(−iRjj). Using the

fact that exp(A) exp(B) = exp(A +B) for commuting matrices A and B, and that all diagonal

matrices commute, we will derive that applying the Hamiltonian R for each edge at the same time

has the effect of applying the unitary D for each.
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Consider two edges {(v1, u1), (v2, u2)}. The overall unitary we apply, with implicit identities

on all other nodes, is

Dv2u2Dv1u1 = exp(−iRv2u2) exp(−iRv1u1)

= exp(−i(Rv2u2 +Rv1u1))

This generalises easily to n nodes: the Hamiltonian of the overall unitary is
∑

(j,k)∈E Rjk as

required.

Lemma 1.3. Any edge layer Ledge =
∏

(j,k)∈E Ujk (as defined in Equation 6.12), with any equiv-

ariantly diagonisable unitary U , can be expressed as an EH-QGC layer.

Proof. This relies on Lemmas 1.1 and 1.2. We can show that a layer of equivariantly diagonalisable

unitaries can expressed as a layer of diagonal unitaries sandwiched between two layers of single-

node unitaries. Each of these can be represented as an EH-QGC layer by the previous lemmas,

therefore giving us a 3-layer EH-QGC construction for this statement.

Consider an equivariantly diagonalisable unitary U = (mV † ⊗V †)D(V ⊗V ) applied for each

edge in a layer
∏

(j,k)∈E Ujk. From the perspective of each node involved in edges, this decomposes

as follows:

• a single-node unitary V

• some number of two-node diagonal matrices separated by V †×V = I, which can be ignored

• a single-node unitary V †

For nodes that are not part of any edge, we have the identity matrix that can be written as V †×V .

So we can rewrite the layer:

∏
(j,k)∈E

Ujk =
(

(V †)⊗n
)( ∏

(j,k)∈E

Djk

)(
V ⊗n

)
(6.13)

This is of the 3-layer form we discussed, proving the lemma.

Proof of Theorem 1. Putting together Lemma 1.1 and 1.3 completes the proof: both types of EDU-

QGC layers given by Equations 6.11 and 6.12 can be represented by one or more EH-QGC layers,

so a sequence of EH-QGC layers can represent any EDU-QGC.

6.3 Equivariant quantum set circuits

In this section, we consider restricting EQGCs so that they cannot depend on the adjacency

matrix of the input graph. Since the connectivity information is not part of the input anymore,
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these models can be considered as learning equivariant functions on sets, a different but also useful

inductive bias. They could also serve as building blocks for EQGCs if the adjacency information

is included in some other form, such as preparing an entangled initial state based on the input

graph. Understanding their capabilities and limitations is therefore useful in multiple ways.

Definition 5. An Equivariant Quantum Set Circuit (EQSC) an arbitrary function C(·) mapping

an integer n representing the size of a set to a unitary C(A) ∈ Csn×sn for any n that behaves

equivariantly as described in equation 6.1.

It is clear that EQSCs are a subclass of EQGCs, since they consist of unitaries depending on

strictly less information than EQGCs.

We would like to characterise the space of all EQSCs, similarly to what Maron et al. did for

equivariant linear layers with regards to a different tensor-based encoding of graph data [42] (see

next section for detailed comparison). However, the unitarity constraint does not lend itself to such

analysis very easily, so we instead characterise upper and lower bounds for the space of equivariant

unitaries.

First, we look at a larger set by dropping the unitarity constraint and considering all equivariant

linear layers instead. In the case of using a single qubit per node, we give a detailed characterisation

and calculate the exact dimensionality of the space of linear layers for sets of size n. We also

demonstrate how specific circuits fit into this description, and discuss how this generalises to

larger node states.

Secondly, we further restrict fixed EQGCs to be diagonal unitaries, and show that the space of

such matrices still grows in dimensionality as we increase the size of the input set.

6.3.1 Comparison with classical invariant/equivariant graph networks

In their paper on invariant and equivariant graph networks [42], Maron et al. ask similar questions

to characterise and implement classical equivariant/invariant models operating on tensors repre-

senting relational data. While the questions we investigate were partly inspired by them, and our

data can also be seen as high-order tensors, there are significant differences in our setting.

Most importantly, the order of k the tensors they dealt with was fixed and independent of the

size n of the input graph, while the size of the tensors along each of those k dimensions depended n.

For example, their input included the adjacency matrix, a tensor in Rn2

. For EQGCs and EQSCs,

this is the other way around. Adding more nodes means working with a larger tensor product,

but each dimension is of a fixed size s. For example, with a single qubit per node, our state is in

C2n . This matters for the notion of equivariance/invariance: applying a permutation p brings the

element at an index (i1, i2, . . . , in) to (ip(1), ip(2), . . . , ip(n)) for us, instead of (p(i1), p(i2), . . . , p(in))
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as in the previous work.

Finally, there are a few more obvious differences: due to the quantum context, we are working

with complex numbers rather than reals, and we are interested in the extra condition of unitarity

rather than arbitrary linear layers.

6.3.2 An upper bound: equivariant linear layers

The unitarity constraint is tricky to analyse, so in this section we will focus on a superset of EQSCs

with simpler structure.

Definition 6. Let an n-element equivariant set linear layer (n-ELL) be a single complex matrix

L ∈ Csn×sn that satisfies Equation 6.1. In other words, an n-ELL is what C(n) can be for an

EQSC C without the unitarity constraint.

First let us consider the case when s = 2, so each node is assigned a single qubit which is in a

superposition of |0〉 and |1〉, and the action of an n-ELL L can be represented as mapping bitstrings

of length n (i.e., computational basis vectors in C2n) to linear combinations of such bitstrings. The

general case for s > 2 is conceptually analogous, but this is easier to state and prove clearly.

Theorem 2. A matrix L ∈ C2n×2n is an n-ELL if and only if it can be expressed by weights

wijk ∈ C for 0 ≤ i ≤ n, 0 ≤ j ≤ i and 0 ≤ k ≤ n − i as follows: for computational basis states

|ψ〉 , |θ〉, 〈θ|L |ψ〉 = wijk if the bitstring representing |ψ〉 contains |1〉s in i different positions, the

bitstring representing |θ〉 contains j |1〉s at positions where |ψ〉 had |1〉s and k |1〉s at positions

where |ψ〉 had |0〉s.

Example 8. For n = 3,

L |100〉 =w100 |000〉+ w101

(
|001〉+ |010〉

)
+ w102 |011〉+

w110 |100〉+ w111

(
|101〉+ |110〉

)
+ w112 |111〉

(6.14)

This shows that 〈001|L |100〉 = 〈010|L |100〉 = w101 since 〈001| and 〈010| both contain one 〈1|

in a position where where |100〉 has a |0〉, and no 〈1| where |100〉 has a |1〉; and 〈101|L |100〉 =

〈110|L |100〉 = w111, because they both contain one 〈1| for the |0〉s in |100〉 and one 〈1| for the

single |1〉 in |100〉. The other inner products involving |100〉 all differ in how many 〈1|s meet |1〉s

and |0〉s, so they can be chosen independently of each other. (Note however that they are not

independent of other values of the matrix L such as those in the vectors L |001〉 and L |010〉, as

we will see in the proof.)

For further clarity, consider representing the following EQSCs with such weights:

Example 9 (CZ(α)-gates between all pairs of nodes). Consider a circuit L consisting of controlled

Z-rotations with a parameter α applied between each pair of qubits. For computational basis
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states |e1〉 , |e2〉, this only applies phases, therefore we have a diagonal matrix and 〈e1|L |e2〉 = 0

if |e1〉 6= |e2〉. The phase applied is e−iα for each pair of qubits that are both set to one, so if the

input contains i ones then we get a phase of e−i(i−1)α/2 in total. Therefore L is represented by

wijk = e−i(i−1)α/2 if j = i, k = 0 and 0 otherwise.

Example 10 (Arbitrary single-qubit unitaries applied everywhere). Let U =
( u0,0 u0,1
u1,0 u1,1

)
. Then,

for x, y ∈ {0, 1}, we have 〈x|U |y〉 = ux,y. Suppose we apply this unitary to all n qubits. Then, for

two computational basis states |e1〉 , |e2〉, 〈e1|U⊗n |e2〉 is of the form ua0,0×ub0,1×uc1,0×ud1,1, where

a and d are the number of overlapping |0〉s and |1〉s respectively in the bitstring representation of

|e1〉 , |e2〉, b is the number of positions where |e1〉 contains a |0〉 and |e2〉 contains a |1〉, and c is

the same in the other direction.

This lets us express the wijk parameters representingU⊗n from inner products of computational

basis states 〈e1|U |e2〉 and expressing a, b, c, d as above:

• d, the number of overlapping ones, is just j.

• c, the number of ones in 〈e1| meeting zeros in |e2〉, is just k.

• We can get b, the number of zeros in 〈e1| meeting ones in |e2〉 as i − j, subtracting the

overlapping ones from the number of ones in the input.

• We can get a, the number of overlapping zeros as (n− i)− k, getting the number of zeros in

|e2〉 as (n− i) and then subtracting the k positions where 〈e1| has a one.

So we get that U⊗n is represented by wijk = un−i−k0,0 × ui−j0,1 × uk1,0 × u
j
1,1.

We will prove this theorem through two simple lemmas.

Lemma 2.1. Any n-ELL L is entirely characterised by its output on |s0〉 = |00 . . . 00〉 , |s1〉 =

|00 . . . 01〉 , . . . , |sn−1〉 = |01 . . . 11〉 , |sn〉 = |11 . . . 11〉.

Proof. Consider any the computational basis vector |e〉 ∈ C2n . This corresponds to some string

of zeros and ones. Then, for the |si〉 containing the same number of zeros and ones, there is

some permutation of indices P̃ ∈ C2n×2n such that |e〉 = P̃ |si〉 and therefore L |e〉 = LP̃ |si〉.

Multiplying by P̃ T gives P̃ TL |e〉 = P̃ TLP̃ |si〉 = L |si〉 by equivariance, so L |e〉 = P̃L |si〉. So

knowing L |si〉 for each |si〉 determines L |e〉 for all computational basis vector, hence determining

it entirely.

Lemma 2.2. We must have 〈e1|L |si〉 = 〈e2|L |si〉 for computational basis vectors |e1〉 , |e2〉 which

can be transformed to each other by permuting over indices that have the same value (0 or 1) in

|si〉.
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Proof. Consider the permutation of indices P̃ that turns |e1〉 to |e2〉. Note that P̃ |si〉 = |si〉

by the given premise, so by equivariance we have 〈e1|L |si〉 = 〈e1| P̃ TLP̃ |si〉 = 〈e1| P̃ TL |si〉 =

〈e2|L |si〉.

Proof of Theorem 2. Lemma 2.2 showed that L |si〉 expressed in the computational basis will have

the same weight for any basis vector with j ones where |si〉 had ones, and k ones where |si〉

had zeros. Denote this weight wijk. By Lemma 2.1, these parameters uniquely characterise the

equivariant linear layer.

This proves the theorem in the forward direction: any n-ELL can be characterised by weights

wijk. Now we show the other direction, that any linear transformation characterised by an arbitrary

choice of wijk satisfies Equation 6.1 and therefore is an n-ELL. Consider an arbitrary L ∈ C2n×2n

given in this form. It suffices to show that it behaves correctly with respect to swap permutations

and input states in the computational basis: more complex permutations can be built by composing

swaps, and more complex states by linear combinations of basis states. For any bitstring input |e〉,

we can have two kinds of swaps:

• In the first case, we swap two indices with the same digit in the bitstring (both |0〉 or |1〉).

The input to L is unchanged, and equivariance is respected because the same coefficients

from wijk are multiplying pairs of output vectors that should be swapped.

• In the second case, the digits at the two indices differ. The inputs passed to L on the two

sides of the equation are different, and equivariance is ensured by the number of overlapping

|1〉s changing in a way that the wijk coefficients get swapped consistently.

As a consequence, we can easily see that the dimensionality of the space of n-ELLs is unbounded

in terms of n, as opposed to the equivariant layers studied by Maron et al., so we cannot hope to

uniformly parameterise the entire space for unbounded n.

Corollary 2.1. The dimensionality of the space of n-ELLs with a single qubit per node over n

nodes is:

n∑
i=0

(i+ 1)(n− i+ 1) =
1

6
n(n+ 1)(n+ 5)

Proof. The left-hand side follows from the above by considering the number of (i, j, k) triples with

0 ≤ i ≤ n, 0 ≤ j ≤ i, 0 ≤ k ≤ n − i. We get the closed form on the right using the formula for

pyramid numbers and simplifying.
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Generalising to larger node states

An analogous result holds for n-ELLs L with larger node states s > 2. Say we have s possible node

basis states {|0〉 , . . . , |s− 1〉}. In this case, a single matrix element 〈θ|L |ψ〉 for computational

basis states |ψ〉 , |θ〉 is depends on the entire set of how many |i〉 appear in |ψ〉 in positions where

|θ〉 contains a |j〉, for all i, j ∈ {0 . . . s− 1}.

To prove this, similarly to Lemma 2.1, we can show that it suffices to specify L |ψ〉 for each

distribution of input node states; and similarly to Lemma 2.2, we can show that 〈θ|L |ψ〉 is invariant

to changing 〈θ| in a way that does not change the number of any 〈i| to |j〉 ‘matches’ as described

above.

Implications for equivariant quantum set circuits

Corollary 6.3.2 has implications for the unitarity-constrained EQSCs – it gives an upper bound for

the dimensionality of the space of possible values for C(n) for any EQSC C. However, it does not

rule out that the size of the unitarity-constrained space might have a fixed bound for arbitrary n.

In that case we could still effecively parametrerise EQSCs by using the same weights to specify

C(n) for all n, similarly to Maron et al.

6.3.3 A lower bound: diagonal equivariant unitaries

To see whether the size of the space of EQSCs grows with the size of the set, we can investigate

a more restricted space as a lower bound: diagonal unitaries satisfying the equivariance Equation

6.1.

A general diagonal unitary can apply an arbitrary phase to each computational basis state

independently. The equivariance condition restricts us to applying the same phase for inputs that

could be transformed to each other by permuting the indices, i.e. inputs that contain the same

distribution of node states (the same number of |0〉s and |1〉s when using one qubit per node). This

gives a lower bound of n+ 1 on the dimensionality of equivariant unitaries over sets of size n using

a single qubit per node, which is still unbounded in n. More generally, for n nodes with s possible

states each, the lower bound is the number of unique s-tuples of nonnegative integers that sum to

n, which is given by
(
n+s−1
s−1

)
.
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Chapter 7

Expressive Power of Quantum Methods

In this chapter, we analyse the expressivity of the Equivariant Quantum Graph Circuit classes

discussed in Section 6.2: the Hamiltonian-based EH-QGCs and the more restricted EDU-QGCs

defined using commuting unitaries.

Since quantum circuits operate differently from MPNNs and other popular GNN architectures,

one might hope that they are more expressive. Since current classical methods with high expres-

sivity are either computationally expensive (like higher-order GNNs) or require a large number of

training samples to converge (like GNNs with random node initialisation), this could in principle

lead to a form of quantum advantage with sufficiently large-scale quantum computers.

We first test empirically whether a very simple EDU-QGC configuration goes beyond 1-WL

distinguishing power. After finding that it does, we show that EDU-QGCs subsume MPNNs: any

MPNN can be ‘simulated’ by a suitable EDU-QGC configuration. We finally conclude with a proof

that they are in fact universal models for arbitrary functions on bounded-size graphs, building on

prior results regarding randomised MPNNs.

Since we have proven EDU-QGCs to be a subclass of QGCNNs in Theorem 1, the results

immediately follow for EH-QGCs as well as the closely related QGCNNs defined by Verdon et al.

which we discussed in Section 6.2.2.1

Our result does not go as far as to convincingly show quantum advantage, since the specific

constructions we give could be simply executed classically, but it is an important step towards

understanding the capabilities of quantum methods.

1And of course, this also applies for the broad class of all EQGCs, but this a fairly vacuous statement due to

their extreme generality as noted in Section 6.2.1.
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(a) C applied to two triangles

(b) C applied to a 6-cycle

α

Figure 7.1: The two circuits in the experiment in top-to-bottom ZX-diagram notation, with the

α-box between white spiders representing a CZ(α) gate (a standard ZX-calculus shorthand [20]).

7.1 Experiment: beyond the Weisfeiler-Lehman test

7.1.1 Experimental setup

To get a sense of the expressivity of EDU-QGCs, we take a very simple restricted model with a

single parameter and apply it to two 1-WL equivalent graphs. If the distribution of the model’s

outputs differs across these two examples, we know that there are graphs that are indistinguishable

by MPNNs but distinguishable by EDU-QGCs with some nontrivial probability (i.e., better than

50%, but maybe not arbitrarily close to 100%).

As our model, we use an EDU-QGC with one qubit per node, defined by two layers:

1. First, we apply CZ(α) gates for some learnable parameter α for all pairs of nodes that

share an edge. The CZ(α) gate is represented by a diagonal matrix diag(1, 1, 1, e−iα), so by

definition it is an equivariantly diagonalised by V = I. and applying it for each edge is a

valid EDU-QGC layer. It also satisfies the undirected condition from Equation 6.5, so we

can use it for undirected graphs without applying it in both directions.

2. Secondly, we apply a Hadamard gate to each node to get interesting measurement outcomes

from the phases applied by the CZ(α) gates.

After the two layers, we measure all qubits in the computational basis and count the number

of |1〉s measured.2 We simulate the circuit classically, so we can exactly calculate the probability

2Since their positions are irrelevant for any invariant aggregation, and we are using a single qubit per node, this
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(a) Measurement probabilities for two triangles (b) Measurement probabilities for one 6-cycle

Figure 7.2: Probabilities of observing given number of |1〉s as a function of α ∈ [−π, π] over the

two input graphs. The two distributions differ most visibly when α is near ±π.

distribution of this value.

As our two samples, we use the smallest 1-WL equivalent pair of graphs from Figure 5.1: G1

consisting of two disconnected triangles, and G2 being a single 6-cycle. These are indistinguishable

to MPNNs as discussed in Section 5.2.1. We do not assign any node features and simply initialise

each node state as the |+〉 = 1√
2
(|0〉+ |1〉) state.

The two circuits we get are shown in Figure 7.1. We run these for different values of α and

compare the distribution of the number of |1〉s measured in their outputs.

7.1.2 Results

We plot the probability of observing 0, 1, . . . , 6 ones from each sample in Figure 7.2. We can make

several interesting observations:

• Most importantly, the distributions do differ for most values of α! Although it is not a huge

difference, the model is also very simple and this is enough to show that we do not face the

same limitation as MPNNs.

• The distributions are most obviously different at α = ±π. Here, their total variation distance

is 1
2 .

• We always measure |000000〉 if α = 0. This is expected, since CZ(0)-rotations do noth-

ing, the input uniform superposition can be viewed as Hadamards applied to |000000〉, and

Hadamards are involutory. Therefore the entire circuit reduces to measuring each qubit after

initialising them as all zeros.

is all we can use from the output.
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• The probabilities of observing odd numbers of |1〉s is the same across the two graphs for any

given value of α (but varies based on α).

• We never observe any odd values for α = ±π. Although is not particularly useful, explaining

the phenomenon will serve as a good test of our understanding in the following section.

7.1.3 Understanding the behaviour at α = π

In an effort to better understand the power of such circuits, we focused on analysing the most

well-behaved special case of the above EDU-QGC, with CZ(π) rotations.

Using the ZX-calculus, we show that applying it to any n-cycle graph results in a uniform

distribution over certain measurement outcomes, give a simple algorithm to check for a given

n-length bitstring whether it is one of these possible outcomes, and prove that the number of

measured |1〉s always has the same parity as the size n of the graph.

With α = π, the α-boxes representing the CZ-gates in Figure 7.1 turn into simple Hadamard.

So for any specific bitstring |b1 . . . bn〉, we can get the probability of measuring it by simplifying

the following scalar:

+ + +

b1 b2 bn

(
√

2)n

where the numerical term comes from normalising each CZ-gate with a factor of
√

2.

We can substitute the appropriate white and gray spiders for the |+〉 , |0〉 and |1〉 states to

apply ZX-calculus techniques [20]: a white spider with phase 0 for the |+〉 state, and gray spiders

with 0 and π phases respectively for |0〉 and |1〉. All of these need to be normalised with a factor

of 1√
2
. Due to the Hadamard gates, these all turn into white spiders that can be fused together,

so this is equal to a simple trace calculation:

α1 α2 αn
(

1√
2

)n
α1 α2 αn

(
√

2)n

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

=

where αi = 0 if bi = 0 and π if bi = 1.
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This can be simplified step by step. Firstly, as long as there are any spiders with αi = 0 and

two distinct neighbours (i.e., there are at least 3 nodes in total), we can remove them and fuse

their neighbours:

=

αk+1

αk−1

αk+1 + αk−10
(7.1)

After repeating this, we get one of two outcomes. Firstly, we might end up with one of 3

possible circuits with that still have some αi = 0 but less than 3 nodes, which we can evaluate by

direct calculation of their matrices:

= 0

= 2

π = 0

(7.2)

Or all the remaining spiders have αi = π, we can repeatedly eliminate them in groups of 4:

π πππ

= ππ π π

= −1 ππ π π

≈ ππ π π

=

(7.3)
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On repeating this, we end up with 0 to 3 nodes with αi = π, which we can evaluate directly:

π =
√

2

π π = 0

π π
=
√

2

= 2

π

(7.4)

Observe that during the simplifications, we only introduced phases with an absolute value of

1, which do not affect measurement probabilities. Furthermore, we always decreased the number

of nodes involved by 2 or 4, hence the parity is unchanged. This means for odd n, we will always

end up with one of the odd-cycle base cases with a trace of 0 or ±
√

2, while for even n, we get to

the even-cycle base cases with traces of 0 or 2.

Combining with the initial coefficient of
(

1√
2

)n
and taking squared norms, we get that for

odd n, each bitstring is observed with probability 0 or 1
2n−1 (so half of all possible bitstrings are

observed), while with even n, each bitstring is observed with probability 0 or 1
2n−2 (so we see only

a quarter of all bitstrings).

Furthermore, to check which bitstrings are observed, we can summarise the ZX-diagram simpli-

fication as a simple algorithm acting on cyclic bitstrings (where the first and last bits are considered

adjacent):

• As long as there is a 0 in the bitstring and the length of the bitstring is more than 2, remove

the zero along with its two neighbors, and replace them with the XOR of the neighbors.

• If you end up with just |00〉, the state has a positive probability to be observed. If you end

up with |0〉 or |01〉, it has 0 probability.

• When there are only 1s remaining, if the number of these is 2 mod 4, the input has 0

probability to be observed, otherwise positive.
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This shows us why the observed number of |1〉s always has the same parity as n: at each step,

both the parity of |1〉s and the parity of the bitstring’s length is unchanged. The only even-length

base case with an odd number of ones is |01〉, which corresponds to states with 0 probability; and

similarly the only odd-length base case with an even number of ones is |0〉, which has the same

outcome.

We can also derive the specific probabilities observed in the experiment. It’s easy to see from

this that in the case of a triangle, the observable states are |001〉 , |010〉 , |100〉 , |111〉. This allows us

to calculate the probabilities observed for the case of two triangles. For the 6-cycle, the observable

states are |000000〉, six rotations of |000101〉, six rotations of |001111〉, and three rotations of

|101101〉, giving the expected probabilities as well.

7.2 Simulating message-passing neural networks

Our experiments gave us clues about the expressivity of EDU-QGCs and EH-QGCs, but they are

also very limited due to the small size of the circuits we can feasibly simulate. We know that our

models can distinguish some graphs that MPNNs cannot, but this does not even show whether

they are strictly more expressive: there might be some graphs that MPNNs can distinguish but

our methods cannot.

In this section, we rule out this possibility by showing that any MPNN with sum aggregation

can be ‘simulated’ by an EDU-QGC. Notably, this includes Graph Isomorphism Networks [67]

among other popular methods. Since GINs are as expressive as the 1-WL isomorphism test, this

shows that EDU-QGCs have the power to distinguish any two graphs that are not 1-WL equivalent

with 0 probability of errors.

Before we state our results, a few remarks:

Remark 6. We consider MPNNs node states with real numbers represented in fixed-point arith-

metic. Although GNNs tend to be defined with uncountable real vector state spaces, these can be

approximated with a finite set if the data is from a bounded set: indeed, physical hardware itself

has a finite number of bits. (The difference between floating-point and fixed-point calculations is

not an important difference as far as expressivity is concerned.)

Remark 7. There is no practical benefit from putting the specific constructions from our proofs

into the quantum setting rather than just running the classical model itself – the significance of

the result is in characterising what EDU-QGCs and related quantum models can represent.

The main result of this section is the following:
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Theorem 3. EDU-QGCs can represent any MPNN with sum aggregation: any (Boolean or

real) function that can be represented by an MPNN with an aggregation function of the form

aggregate(k)({{hi}}) =
∑
i hi can also be represented an EDU-QGC.

For an MPNN with k layers with an embedding dimensionality of w, with a fixed-point real

representation of b bits per real number, this EDU-QGC needs (2k + 1)wb qubits per node.

Since MPNNs with sum aggregation, such as the Graph Isomorphism Networks defined by

Equation 5.7, can distinguish any 1-WL distinguishable graphs [67], we immediately obtain the

following corollary:

Corollary 3.1. EDU-QGCs can distinguish any pair of 1-WL distinguishable graphs.

It remains to prove Theorem 3, which we do by giving an explicit construction to simulate an

arbitrary MPNN with sum aggregation. The node states will be conceptually split into registers

representing fixed-point real numbers in two’s complement in the computational basis. We first

need to establish that we can perform addition on these registers using unitary transformations.

Lemma 3.1. Consider two node states with two registers each, storing unsigned integers: |a1, a2〉⊗

|b1, b2〉, with ai, bi ∈ {0, . . . , 2b − 1} for some b. Let U map |a1, b1〉 ⊗ |a2, b2〉 to |a1, b1 + a2〉 ⊗

|a2, b2 + a1〉, with standard overflowing addition. U is an equivariantly diagonalisable unitary and

satisfies the undirected symmetry condition in Equation 6.5.

Proof. Let Sa be a single-node unitary that increments integers encoded in the computational

basis by a. Note that Sa = Sa1 . Diagonalise S1 as V †DV , then Sa = (V †DV )a = V †DaV .

Now U can be represented by applying V to the second register of each node, conditionally

applying D to the the second register of each node some number of times depending on the value

of the first register, and finally applying V † to the second registers. The controlled application

of a diagonal matrix is still diagonal, so this decomposition diagonalises U equivariantly with

(I ⊗ V )⊗2.

The undirected symmetry Equation 6.5 can be seen easily from the definition of U : swapping

a1 with a2 and b1 with b2 results in swapping the values in the output.

Lemma 3.2. Consider two node states with two registers each, storing fixed point unitaries in

two’s complement: |a1, a2〉 ⊗ |b1, b2〉, with ai, bi ∈ {(−2b−1 + 1) × 2−k, . . . , 2b−1 × 2−k} for some

b, k. Let U map |a1, b1〉⊗|a2, b2〉 to |a1, b1 + a2〉⊗|a2, b2 + a1〉, with standard overflowing addition.

U is an equivariantly diagonalisable unitary.

Proof. As far as the bit-level operations are concerned, this is exactly the same as Lemma 3.1:

with two’s complement, standard overflowing addition of unsigned integers can represent addition
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of signed integers, and fixed point reals are essentially integers interpreted with a multiplication of

2−k.

Proof of Theorem 3. Let M be an MPNN with k layers and width w, where the initial states are

h1 . . .hn. We define an EDU-QGC C which computes the same final node embeddings as M ,

based on M ’s iterated message-passing and node update procedure.

We conceptually divide the qubits for each node v into (k+ 1)×w registers h
(0,0)
v , . . . ,h

(k,w−1)
v

of b qubits each, and k × w registers a
(1,0)
v , . . . ,a

(k,w−1)
v of b qubits each. This is a total of

(k + 1)w × b + kw × b = (2k + 1)wb qubits as expected. The s
(0)
v registers are initialised to the

initial MPNN node states hv, and all other qubits are set to |0〉. Then, for each MPNN layer, we

first simulate its message-passing phase with two-node unitaries for all edges, then we simulate the

update functions with single-node unitaries.

Specifically, for the k-th message-passing layer of M , we apply a unitary U (k) for each edge

(v, u) that should have the effect of adding the value of h
(k−1,i)
v to a

(k,i)
u and vice versa for each

i ∈ {0 . . . w− 1}. This results in the a
(k,·)
v registers eventually storing the sum of their neighbours’

states from the previous layer, which simulates the sum aggregation. This is an equivariantly

diagonalisable unitary acting well on undirected graphs by Lemma 3.2, so applying it for each edge

is a valid EDU-QGC layer.

For the k-th update layer, a unitary is applied to each node that XORs the result of the MPNN’s

update function, update(k)(h
(k−1,·)
v ,a

(k)
v ) onto the set of registersh

(k,·)
v , which are until this point

still initialised to all zeros. This is a permutation and therefore a unitary, so applying it for each

node is a valid EDU-QGC layer.

At the end of the circuit, we measure all qubits, which will include the final node states h
(k,·)
v .

We can classically aggregate in the same way the MPNN pools its results to give our prediction.

This will match the MPNN’s output for all inputs with 0 probability of errors.

7.3 EDU-QGCs are universal for graphs

In the following section, we will build on powerful results about randomisation in classical MPNNs

(discussed in Section 5.2.3) to show stronger claims about the expressivity of our quantum models.

In short, we will simulate classical models that randomise some part of the node state by putting

some qubits into the uniform superposition over all bitstrings, then operating in the computational

basis. Note that unlike in the classical case, where this randomisation had to be explicitly added

to extend model capacity, we can do this without modifying our model definition in the quantum

case – our results will apply to EDU-QGCs as given in Definition 4 and their superclasses.
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This will allow us to prove the following theorem, which was shown to hold for classical MPNNs

with readouts at each layer by Abboud et al.:

Theorem 4. For any real function f defined over graphs up to size n, and any ε > 0, there is an

EDU-QGC that calculates f(G) with probability (1− ε) for any graph G.

7.3.1 From Boolean to real-valued functions

We will prove Theorem 4 by first looking at the case of Boolean-valued functions over graphs, and

show that the case for reals follows by the same argument as Abboud et al. used [2].

Lemma 4.1. For any Boolean function f defined over graphs up to size n, and any ε > 0, there

is an EDU-QGC that calculates f(G) with probability (1− ε) for any graph G.

We show that Theorem 4 follows, so it just remains to prove Lemma 4.1:

Proof of Theorem 4 given Lemma 4.1. Consider the outputs of any real-valued function f over

graphs of size n expressed in binary decimal form, in the form of zeros and ones assigned to

different positions. Since there is a finite number of such graphs, there is a finite number k of

different decimal places where the result differs for any two graphs. For each of these, a binary

classifier can be represented by EDU-QGCs by Lemma 4.1 that gives the correct prediction with

probability 1− ε
k .

Say the i-th binary classifier predicts an output Fi(G) ∈ {0, 1} for any bounded-size graph G

that represents the bit at position ki ∈ Z of the desired real-number output. Running these ‘next

to each other’ is also a valid EDU-QGC, and their results can then be combined by an MLP to

calculate the real output:

F (G) =
(∑

i

Fi(G)× 2ki
)

+ C (7.5)

By the union bound, the total probability of any classifier making a mistake is ε, so with probability

(1− ε) our prediction can be as accurate as allowed by our representation of real numbers.

7.3.2 Individualising graphs

Abboud et al. prove their results about the power of MPNNs as follows [56, 2]: say a graph

is individualised if all nodes are extended with unique features. They construct MPNNs that

accurately model any function from a large class assuming the input graph is individualised. And

for any graph of n nodes and arbitrarily small desired error rate ε, if we randomise some node

features appropriately, the result will be individualised with probability at least (1− ε).

In the case of EDU-QGCs, if we assume some part of all node states is initialised to all |0〉s,

we can have the first EDU-QGC layer apply a unitary on all nodes consisting of Hadamard gates
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on the appropriate qubits. This maps them to the uniform superposition over all bitstrings. If we

then use the construction from Theorem 3 that acts classically on the computational basis, and

then measure the results, we get the same result as running the MPNN with a randomised initial

state. The following lemma bounds the number of qubits required for this:

Lemma 4.2. Putting n sets of b ≥ 2 log(n) + log(1/ε) qubits each in the uniform superposition

and measuring them leads to n unique bitstrings with probability at least (1− ε).

Proof. We are effectively just randomising b classical bits uniformly. If we randomise b individual

bits of node state uniformly at random, each pair of nodes would get the same label with just 2−b

probability. This applies for each of the n(n − 1)/2 < n2 pairs of nodes, so by the union bound,

the total probability of any match is at most 2−bn2. This is less than ε if b ≥ 2 log(n) + log(1/ε)

bits are randomised.

7.3.3 Achieving universality

Note that we cannot directly rely on the results of either Abboud et al. or Sato et al.: although

our theorem is analogous to that of Abboud et al., they used MPNNs with readouts at each layer

as described in Equation 5.9, which out quantum models cannot simulate [2]. Sato et al. used

MPNNs witout readouts, but did not prove such a claim of universality. Therefore, give a novel

MPNN construction that is partially inspired by Sato et al., but relies solely on the results of Xu

et al. about their Graph Isomorphism Networks [67], and use it to show Lemma 4.1.

We will rely on the following about Graph Isomorphism Networks which follows directly from

Corollary 6 of Xu et al. [67]:

Lemma 4.3. Let X be a countable set of vectors, and let Pk(X ) be the set of multisets of elements

of X with size at most k. The aggregate-update function of GINs given in Equation 5.7 applied to

inputs from (X × Pk(X )) (representing a node’s previous state and the multiset of its neighbours’

previous states) can learn injective functions over such an input space.

From this result, we build up to MPNNs that can injectively encode the connected subgraph

of each node into their final states if the initial features are unique. To formalise this, we need the

following auxiliary definition:

Definition 7. For a graph G with initial node features hv for each node v, a node u in G and

k ∈ Z+, define

T (G, u, l) =


{{hu}} if k = 0(
hu, {{T (G, v, k − 1) | v ∈ N (u)}}

)
if k > 0

(7.6)
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where N (u) repersents the set of neighbours of a node u.

Following Sato et al., we call this a level-k tree, and it represents total information propagated

to a node in k message-passing steps.

We show that GINs with k layers can injectively encode the level-k tree of a node:

Lemma 4.4. Let GINθ(G)v represent the final node features of node v in a graph G after applying

a Graph Isomorphism Network with parameters θ. There is some configuration θ∗ of a k-layer GIN

such that for any nodes v1, v2 in degree-bounded graphs G1, G2 respectively, with initial node features

chosen from a countable space, if T (G1, v1, k) 6= T (G2, v2, k) then GINθ∗(G1)v1 6= GINθ∗(G2)v2 .

Proof. By induction. The base case k = 1 follows directly from Lemma 4.3. The inductive step

follows from the same claim, since the outputs of a GIN layer applied to a countable input space still

form a countable space: the set of bounded-size multisets from a countable space is still countable,

and so is any image of this set under some function.

Furthermore, we show that a the level-n tree of a node in a graph of n nodes identifies the

isomorphism class of the node’s connected component:

Lemma 4.5. Let G1, G2 be two connected graphs with node sets V1, V2 of size n with node feature

vectors hv unique within each graph, and take any v1 ∈ V1, v2 ∈ V2. If G1 and G2 are not

isomorphic, then T (G1, v1, n) 6= T (G2, v2, n). Furthermore, if G1 and G2 are not connected, then

the same result holds but with isomorphism class of the connected component of v1 and v2 instead

of G1 and G2 itself.

Proof. Let {v1, . . . ,vn} be the unique node feature vectors in G1. Note that all of these will appear

in T (G1, v1, n), because the features of any nodes at distance d from v1 will appear in T (G1, v1, d)

by induction, and a connected graph of n nodes has a diameter at most (n − 1). Therefore if G2

contains a different set of unique node features, we get T (G1, v1, n) 6= T (G2, v2, n) immediately.

Otherwise for each i, we can denote v
(1)
i as the node in G1 with feature vector vi, and v

(2)
i as

the node in G2 with the same vector. (These are unique by the uniqueness of feature vectors.)

From T (G1, v1, n), we can extract the sets N1(vi) = {hu | u ∈ N (v
(1)
i )}, i.e., the features of

nodes adjacent to the node with the feature vector vi. This also follows by induction: T (G1, v1, k)

recursively includes a tuple (hu, {{T (G1, w, k − d − 1) | w ∈ N (u)}}) for any u at d ≤ k − 1 steps

from v1, and T (G1, w, k − d − 1) gives us hw for any k, d. Similarly, from T (G2, v2, n), we can

extract N2(vi) = {hu | u ∈ N (v
(2)
i )}. If T (G1, v1, n) = T (G1, v2, n), then N1(vi) = N2(vi) for all

i, which gives an isomorphism between G1 and G2: the nodes v
(1)
i and v

(2)
i are in correspondence.

The case for not connected graphs holds because T (G, v, n) = T (C, v, n) for a any graph G

with a node v in a connected component C, and then the same derivation applies.
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These results finally allow us to prove Lemma 4.1 and thereby also complete the proof of

Theorem 4:

Proof of Lemma 4.1. We start by initialising a sufficient number of qubits of each node to |+〉 such

that with probability (1 − ε), observing all n initial node states leads to n unique measurements.

By Lemma 4.2, d2 log(n) + log(1/ε) quits suffice. We apply an n-layer GIN to this input, which

our EDU-QGC can simulate by Theorem 3. By combining Lemmas 4.4 and 4.5, with appropriate

parameterisation the GIN, the final node states will be an injective function of the node’s connected

component.

Since there is a finite number of such graphs, the set of the GIN’s outputs is bounded, so

an MLP applied to the node state can turn this into a vector of indicator variables for each

isomorphism class within some required accuracy: let an indicator I
(v)
C , part of the node state for

node v, be between 1− 1
3n and 1 if the v’s component is isomorphic to a graph C (without regard

for the random features) and between 0 and 1
3n otherwise. Since the update function in the GIN

architecture is an MLP, this computation can be built into its final layer, which our EDU-QGC

can simulate.

We can then pool the node states by summing them into graph-level indicators: for each

isomorphism class C of at most n-node graphs, the pooled embedding will contain a summed value

NC encoding the number of nodes whose connected component is in that isomorphism class. For

each IC , the total error is at most 1
3 , so graphs with a different multiset of connected components

will be mapped to different vectors. Since the set of graphs of size n is finite, the space of these

vectors is bounded, and we can apply an MLP to these values to learn any Boolean function over

bounded graphs. If we construct an MLP with accuracy 0.4, the output is always more than 0.6

if the correct answer is 1 and always less than 0.4 if the correct answer is 0. This can be mapped

to discrete values in {0, 1} with perfect accuracy via a continuous function easily representable by

further MLP layers. Therefore the output of the model will be exactly correct as long as observing

the |+〉 states leads to a unique initial state for each node, which has probability at least (1 − ε)

as required.
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Chapter 8

Summary and Outlook

8.1 Summary of results

In this project, we proposed Equivariant Quantum Graph Circuits, a general framework of quantum

machine learning architectures for graph-based machine learning, and explored possible designs

within that framework.

Several interesting subclasses were discussed and it was shown that most prior work can be seen

as a special case of this framework. EQSCs, corresponding to functions on sets, were characterised

in detail, with upper and lower bounds on the dimensionality of such layers over a graph of size

n. Two other subclasses, QGCNNs and EDU-QGCs, were proven to have desirable theoretical

properties: they are universal for functions defined up to a fixed graph size, just like randomised

MPNNs. Our experiments were small-scale due to the computational difficulties of simulating

quantum computers classically, but they did confirm that the distinguishing power of our quantum

methods exceeds that of deterministic MPNNs.

8.2 Open questions

By defining the framework of EQGCs and their subclasses, many questions can be raised that we

did not explore in this project. We showed upper and lower bounds on the dimensionality of the

space of fixed equivariant unitaries over n nodes in Section 6.3 – what is the exact value? We

showed that EDU-QGCs are a subset of QGCNNs in Section 6.2.3 – but are they a strict subset?

And what other subclasses would make sense? Using arbitrary node-level Hamiltonians or unitaries

led to good expressivity results as we showed in Chapter 7, but it is not feasible to scale to a large

number of qubits per node, since the space of parameters grows exponentially. Perhaps a small

number of qubits will already turn out to be useful, but EQGC classes with better scalability to

64



large node states should also be investigated.

There are also design choices beyond the EQGC framework that might be interesting. We

assumed measurement happens at the end of the circuit, but it might be useful to measure some

earlier and condition operations on others classically: MacCormack et al. proposed such meth-

ods [40], although not in the domain of graphs. More broadly, mixed-state quantum computing

offers possibilities that we have not analysed.

Ultimately, the biggest questions in the field of quantum computing are about quantum ad-

vantage: what useful tasks can we expect quantum computers to speed up, and what kind of

hardware do these applications require? More work into the theoretical capabilities of quantum

machine learning architectures might be able contribute to this: if we can find a class of useful

functions that are significantly more costly to learn classically than in the quantum setting, per-

haps related to the behaviour of molecules or other quantum systems, that would be very relevant

for practical applications.
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